A conic duality Frank–Wolfe type theorem via exact penalization in quadratic optimization

The famous Frank–Wolfe theorem ensures attainability of the optimal value for quadratic objective functions over a (possibly unbounded) polyhedron if the feasible values are bounded. This theorem does not hold in general for conic programs where linear constraints are replaced by more general convex constraints like positive-semidefiniteness or copositivity conditions, despite the fact that the … Read more

Copositivity cuts for improving SDP bounds on the clique number

Adding cuts based on copositive matrices, we propose to improve Lovász’ bound on the clique number and its tightening introduced by McEliece, Rodemich, Rumsey, and Schrijver. Candidates for cheap and efficient copositivity cuts of this type are obtained from graphs with known clique number. The cost of previously established semidefinite programming bound hierarchies rapidly increases … Read more

Efficient and cheap bounds for (standard) quadratic optimization

A standard quadratic optimization problem (StQP) consists in minimizing a quadratic form over a simplex. A number of problems can be transformed into a StQP, including the general quadratic problem over a polytope and the maximum clique problem in a graph. In this paper we present several polynomial-time bounds for StQP ranging from very simple … Read more

New results for molecular formation under pairwise potential minimization

We establish new lower bounds on the distance between two points of a minimum energy configuration of $N$ points in $\mathbb{R}^3$ interacting according to a pairwise potential function. For the Lennard-Jones case, this bound is 0.67985 (and 0.7633 in the planar case). A similar argument yields an estimate for the minimal distance in Morse clusters, … Read more

Solving standard quadratic optimization problems via linear, semidefinite and copositive programming

The problem of minimizing a (non-convex) quadratic function over the simplex (the standard quadratic optimization problem) has an exact convex reformulation as a copositive programming problem. In this paper we show how to approximate the optimal solution by approximating the cone of copositive matrices via systems of linear inequalities, and, more refined, linear matrix inequalities … Read more