Activity Identification and Local Linear Convergence of Douglas-Rachford/ADMM under Partial Smoothness

Proximal splitting algorithms are becoming popular to solve convex optimization problems in variational image processing. Within this class, Douglas-Rachford (DR) and ADMM are designed to minimize the sum of two proper lower semicontinuous convex functions whose proximity operators are easy to compute. The goal of this work is to understand the local convergence behaviour of … Read more

Local Linear Convergence of Forward–Backward under Partial Smoothness

In this paper, we consider the Forward–Backward proximal splitting algorithm to minimize the sum of two proper closed convex functions, one of which having a Lipschitz–continuous gradient and the other being partly smooth relatively to an active manifold $\mathcal{M}$. We propose a unified framework in which we show that the Forward–Backward (i) correctly identifies the … Read more

Convergence Rates with Inexact Nonexpansive Operators

In this paper, we present a convergence rate analysis for the inexact Krasnosel’ski{\u{\i}}-Mann iteration built from nonexpansive operators. Our results include two main parts: we first establish global pointwise and ergodic iteration-complexity bounds, and then, under a metric subregularity assumption, we establish local linear convergence for the distance of the iterates to the set of … Read more

Iteration-Complexity of a Generalized Forward Backward Splitting Algorithm

In this paper, we analyze the iteration-complexity of a generalized forward-backward (GFB) splitting algorithm, recently proposed in~\cite{gfb2011}, for minimizing the large class of composite objectives $f + \sum_{i=1}^n h_i$ on a Hilbert space, where $f$ has a Lipschitz-continuous gradient and the $h_i$’s are simple (i.e. whose proximity operator is easily computable ). We derive iteration-complexity … Read more

A quasi-Newton proximal splitting method

A new result in convex analysis on the calculation of proximity operators in certain scaled norms is derived. We describe efficient implementations of the proximity calculation for a useful class of functions; the implementations exploit the piece-wise linear nature of the dual problem. The second part of the paper applies the previous result to acceleration … Read more

Generalized Forward-Backward Splitting

This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form $F + \sum_{i=1}^n G_i$, where $F$ has a Lipschitz-continuous gradient and the $G_i$’s are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than $n = 1$ non-smooth … Read more