Constrained Nonlinear Programming for Volatility Estimation with GARCH Models

The paper proposes a constrained Nonlinear Programming methodology for volatility estimation with GARCH models. These models are usually developed and solved as unconstrained optimization problems whereas they actually fit into nonlinear, nonconvex problems. Computational results on FTSE 100 and S & P 500 indices with up to 1500 data points are given and contrasted to … Read more

Solving large MINLPs on computational grids

We consider the solution of Mixed Integer Nonlinear Programming (MINLP) problems by a parallel implementation of nonlinear branch-and-bound on a computational grid or meta-computer. Computational experience on a set of large MINLPs is reported which indicates that this approach is efficient for the solution of large MINLPs. CitationNumerical Analysis Report NA/200, Department of Mathematics, University … Read more

A bundle filter method for nonsmooth nonlinear optimization

We consider minimizing a nonsmooth objective subject to nonsmooth constraints. The nonsmooth functions are approximated by a bundle of subgradients. The novel idea of a filter is used to promote global convergence. CitationNA\195, Department of Mathematics, University of Dundee, UK, December, 1999ArticleDownload View PDF

On the global convergence of an SLP-filter algorithm

A mechanism for proving global convergence infilter-type methods for nonlinear programming is described. Such methods are characterized by their use of the dominance concept of multi objective optimization, instead of a penalty parameter whose adjustment can be problematic. The main point of interest is to demonstrate how convergence for NLP can be induced without forcing … Read more

Integrating SQP and branch-and-bound for Mixed Integer Nonlinear Programming

This paper considers the solution of Mixed Integer Nonlinear Programming (MINLP) problems. Classical methods for the solution of MINLP problems decompose the problem by separating the nonlinear part from the integer part. This approach is largely due to the existence of packaged software for solving Nonlinear Programming (NLP) and Mixed Integer Linear Programming problems. In … Read more