Strong Duality and Minimal Representations for Cone Optimization

The elegant results for strong duality and strict complementarity for linear programming, \LP, can fail for cone programming over nonpolyhedral cones. One can have: unattained optimal values; nonzero duality gaps; and no primal-dual optimal pair that satisfies strict complementarity. This failure is tied to the nonclosure of sums of nonpolyhedral closed cones. We take a … Read more

Fischer-Burmeister Complementarity Function on Euclidean Jordan Algebras

Recently, Gowda et al. [10] established the Fischer-Burmeister (FB) complementarity function (C-function) on Euclidean Jordan algebras. In this paper, we prove that FB C-function as well as the derivatives of the squared norm of FB C-function are Lipschitz continuous. CitationResearch Report CORR 2007-17, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada, November … Read more

Maximum Utility Product Pricing Models and Algorithms Based on Reservation Prices

We consider a revenue management model for pricing a product line with several customer segments under the assumption that customers’ product choices are determined entirely by their reservation prices. We highlight key mathematical properties of the maximum utility model and formulate it as a mixed-integer programming problem, design heuristics and valid cuts. We further present … Read more

Monotonicity of L”{o}wner Operators and Its Applications to Symmetric Cone Complementarity Problems

This paper focuses on monotone L\”{o}wner operators in Euclidean Jordan algebras and their applications to the symmetric cone complementarity problem (SCCP). We prove necessary and sufficient conditions for locally Lipschitz L\”{o}wner operators to be monotone, strictly monotone and strongly monotone. We also study the relationship between monotonicity and operator-monotonicity of L\”{o}wner operators. As a by-product … Read more

Self-Concordant Barriers for Convex Approximations of Structured Convex Sets

We show how to approximate the feasible region of structured convex optimization problems by a family of convex sets with explicitly given and efficient (if the accuracy of the approximation is moderate) self-concordant barriers. This approach extends the reach of the modern theory of interior-point methods, and lays the foundation for new ways to treat … Read more

Probabilistic Choice Models for Product Pricing using Reservation Prices

We consider revenue management models for pricing a product line with several customer segments, working under the assumption that every customer’s product choice is determined entirely by their reservation price. We model the customer choice behavior by several probabilistic choice models and formulate the problems as mixed-integer programming problems. We study special properties of these … Read more

Large Scale Portfolio Optimization with Piecewise Linear Transaction Costs

We consider the fundamental problem of computing an optimal portfolio based on a quadratic mean-variance model of the objective function and a given polyhedral representation of the constraints. The main departure from the classical quadratic programming formulation is the inclusion in the objective function of piecewise linear, separable functions representing the transaction costs. We handle … Read more

Clustering via Minimum Volume Ellipsoids

We propose minimum volume ellipsoids (MVE) clustering as an alternate clustering technique to k-means clustering for Gaussian data points and explore its value and practicality. MVE clustering allocates data points into clusters that minimizes the total volumes of each cluster’s covering ellipsoids. Motivations for this approach include its scale-invariance, its ability to handle asymmetric and … Read more

Invariance and efficiency of convex representations

We consider two notions for the representations of convex cones: $G$-representation and lifted-$G$-representation. The former represents a convex cone as a slice of another; the latter allows in addition, the usage of auxiliary variables in the representation. We first study the basic properties of these representations. We show that some basic properties of convex cones … Read more

Unification of lower-bound analyses of the lift-and-project rank of combinatorial optimization polyhedra

We present a unifying framework to establish a lower-bound on the number of semidefinite programming based, lift-and-project iterations (rank) for computing the convex hull of the feasible solutions of various combinatorial optimization problems. This framework is based on the maps which are commutative with the lift-and-project operators. Some special commutative maps were originally observed by … Read more