Speeding up continuous GRASP

Continuous GRASP (C-GRASP) is a stochastic local search metaheuristic for finding cost-efficient solutions to continuous global optimization problems subject to box constraints (Hirsch et al., 2006). Like a greedy randomized adaptive search procedure (GRASP), a C-GRASP is a multi-start procedure where a starting solution for local improvement is constructed in a greedy randomized fashion. In … Read more

Global optimization by continuous GRASP

We introduce a novel global optimization method called Continuous GRASP (C-GRASP) which extends Feo and Resende’s greedy randomized adaptive search procedure (GRASP) from the domain of discrete optimization to that of continuous global optimization. This stochastic local search method is simple to implement, is widely applicable, and does not make use of derivative information, thus … Read more

TTTPLOTS: A perl program to create time-to-target plots

This papers describes a perl language program to create time-to-target solution value plots for measured CPU times that are assumed to fit a shifted exponential distribution. This is often the case in local search based heuristics for combinatorial optimization, such as simulated annealing, genetic algorithms, iterated local search, tabu search, WalkSAT, and GRASP. Such plots … Read more

A novel integer programming formulation for the K-SONET ring assignment problem

We consider the problem of interconnecting a set of customer sites using SONET rings of equal capacity, which can be defined as follows: Given an undirected graph G=(V,E) with nonnegative edge weight d(u,v), (u,v) in E, and two integers K and B, find a partition of the nodes of G into K subsets so that … Read more

GRASP for nonlinear optimization

We propose a Greedy Randomized Adaptive Search Procedure (GRASP) for solving continuous global optimization problems subject to box constraints. The method was tested on benchmark functions and the computational results show that our approach was able to find, in a few seconds, optimal solutions for all tested functions despite not using any gradient information about … Read more

A Random Key Based Genetic Algorithm for the Resource Constrained Project Scheduling Problem

This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach … Read more

GRASP with path-relinking for the weighted maximum satisfiability problem

A GRASP with path-relinking for finding good-quality solutions of the weighted maximum satisfiability problem (MAX-SAT) is described in this paper. GRASP, or Greedy Randomized Adaptive Search Procedure, is a randomized multi-start metaheuristic, where at each iteration locally optimal solutions are constructed, each independent of the others. Previous experimental results indicate its effectiveness for solving weighted … Read more

Parallel Greedy Randomized Adaptive Search Procedures

A GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic for producing good-quality solutions of combinatorial optimization problems. It is usually implemented with a construction procedure based on a greedy randomized algorithm followed by local search. In this Chapter, we survey parallel implementations of GRASP. We describe simple strategies to implement independent parallel GRASP heuristics … Read more

A genetic algorithm for the resource constrained multi-project scheduling problem

This paper presents a genetic algorithm for the Resource Constrained Multi-Project Scheduling Problem (RCMPSP). The chromosome representation of the problem is based on random keys. The schedules are constructed using a heuristic that builds parameterized active schedules based on priorities, delay times, and release dates defined by the genetic algorithm. The approach is tested on … Read more

Survivable IP network design with OSPF routing

Internet protocol (IP) traffic follows rules established by routing protocols. Shortest path based protocols, such as Open Shortest Path First (OSPF), direct traffic based on arc weights assigned by the network operator. Each router computes shortest paths and creates destination tables used for routing flow on the shortest paths. If a router has multiple outgoing … Read more