Semidefinite approximations for bicliques and biindependent pairs

\(\) We investigate some graph parameters dealing with biindependent pairs $(A,B)$ in a bipartite graph $G=(V_1\cup V_2,E)$, i.e., pairs $(A,B)$ where $A\subseteq V_1$, $B\subseteq V_2$ and $A\cup B$ is independent. These parameters also allow to study bicliques in general graphs. When maximizing the cardinality $|A\cup B|$ one finds the stability number $\alpha(G)$, well-known to be … Read more

An effective version of Schmüdgen’s Positivstellensatz for the hypercube

Let S be a compact semialgebraic set and let f be a polynomial nonnegative on S. Schmüdgen’s Positivstellensatz then states that for any \eta>0, the nonnegativity of f+\eta on S can be certified by expressing f+\eta as a conic combination of products of the polynomials that occur in the inequalities defining S, where the coefficients … Read more

Exactness of Parrilo’s conic approximations for copositive matrices and associated low order bounds for the stability number of a graph

De Klerk and Pasechnik (2002) introduced the bounds $\vartheta^{(r)}(G)$ ($r\in \mathbb{N}$) for the stability number $\alpha(G)$ of a graph $G$ and conjectured exactness at order $\alpha(G)-1$: $\vartheta^{(\alpha(G)-1)}(G)=\alpha(G)$. These bounds rely on the conic approximations $\mathcal{K}_n^{(r)}$ by Parrilo (2000) for the copositive cone $\text{COP}_n$. A difficulty in the convergence analysis of $\vartheta^{(r)}$ is the bad behaviour … Read more

Bounding the separable rank via polynomial optimization

We investigate questions related to the set $\mathcal{SEP}_d$ consisting of the linear maps $\rho$ acting on $\mathbb{C}^d\otimes \mathbb{C}^d$ that can be written as a convex combination of rank one matrices of the form $xx^*\otimes yy^*$. Such maps are known in quantum information theory as the separable bipartite states, while nonseparable states are called entangled. In … Read more

Finite convergence of sum-of-squares hierarchies for the stability number of a graph

We investigate a hierarchy of semidefinite bounds $\vartheta^{(r)}(G)$ for the stability number $\alpha(G)$ of a graph $G$, based on its copositive programming formulation and introduced by de Klerk and Pasechnik [SIAM J. Optim. 12 (2002), pp.875–892], who conjectured convergence to $\alpha(G)$ in $r=\alpha(G) -1$ steps. Even the weaker conjecture claiming finite convergence is still open. … Read more

Optimizing hypergraph-based polynomials modeling job-occupancy in queueing with redundancy scheduling

We investigate two classes of multivariate polynomials with variables indexed by the edges of a uniform hypergraph and coefficients depending on certain patterns of union of edges. These polynomials arise naturally to model job-occupancy in some queuing problems with redundancy scheduling policy. The question, posed by Cardinaels, Borstand van Leeuwaarden (arXiv:2005.14566, 2020), is to decide … Read more

Near-optimal analysis of univariate moment bounds for polynomial optimization

We consider a recent hierarchy of upper approximations proposed by Lasserre (arXiv:1907.097784, 2019) for the minimization of a polynomial f over a compact set K⊆ℝn. This hierarchy relies on using the push-forward measure of the Lebesgue measure on K by the polynomial f and involves univariate sums of squares of polynomials with growing degrees 2r. … Read more

Improved convergence analysis of Lasserre’s measure-based upper bounds for polynomial minimization on compact sets

We consider the problem of computing the minimum value of a polynomial f over a compact set K⊆R^n, which can be reformulated as finding a probability measure ν on K minimizing the expected value of f over K. Lasserre showed that it suffices to consider such measures of the form ν=qμ, where q is a … Read more

Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere

We study the convergence rate of a hierarchy of upper bounds for polynomial minimization prob-lems, proposed by Lasserre [SIAM J. Optim.21(3) (2011), pp.864-885], for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r of the hierarchy is defined as the minimal expected value of the polynomial over … Read more

A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis

The generalized problem of moments is a conic linear optimization problem over the convex cone of positive Borel measures with given support. It has a large variety of applications, including global optimization of polynomials and rational functions, options pricing in finance, constructing quadrature schemes for numerical integration, and distributionally robust optimization. A usual solution approach, … Read more