An adaptive accelerated first-order method for convex optimization

This paper presents a new accelerated variant of Nesterov’s method for solving composite convex optimization problems in which certain acceleration parameters are adaptively (and aggressively) chosen so as to substantially improve its practical performance compared to existing accelerated variants while at the same time preserve the optimal iteration-complexity shared by these methods. Computational results are … Read more

A first-order block-decomposition method for solving two-easy-block structured semidefinite programs

In this paper, we consider a first-order block-decomposition method for minimizing the sum of a convex differentiable function with Lipschitz continuous gradient, and two other proper closed convex (possibly, nonsmooth) functions with easily computable resolvents. The method presented contains two important ingredients from a computational point of view, namely: an adaptive choice of stepsize for … Read more

Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems

In this paper, we consider block-decomposition first-order methods for solving large-scale conic semidefinite programming problems. Several ingredients are introduced to speed-up the method in its pure form such as: an aggressive choice of stepsize for performing the extragradient step; use of scaled inner products in the primal and dual spaces; dynamic update of the scaled … Read more

An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and its Implications to Second-Order Methods

This paper presents an accelerated variant of the hybrid proximal extragradient (HPE) method for convex optimization, referred to as the accelerated HPE (A-HPE) method. Iteration-complexity results are established for the A-HPE method, as well as a special version of it, where a large stepsize condition is imposed. Two specific implementations of the A-HPE method are … Read more

Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems

In a recent paper by Monteiro and Svaiter, a hybrid proximal extragradient framework has been used to study the iteration-complexity of a first-order (or, in the context of optimization, second-order) method for solving monotone nonlinear equations. The purpose of this paper is to extend this analysis to study a prox-type first-order method for monotone smooth … Read more

Convergence rate of inexact proximal point methods with relative error criteria for convex optimization

In this paper, we consider a class of inexact proximal point methods for convex optimization which allows a relative error tolerance in the approximate solution of each proximal subproblem. By exploiting the special structure of convex optimization problems, we are able to derive surprising complexity bounds for the aforementioned class. As a consequence, we show … Read more

Iteration-complexity of block-decomposition algorithms and the alternating minimization augmented Lagrangian method

In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a separable two-block structure and introduce a framework of block-decomposition prox-type algorithms for solving it which allows for each one of the single-block proximal subproblems to be solved in an … Read more

Complexity of variants of Tseng’s modified F-B splitting and Korpelevich’s methods for generalized variational inequalities with applications to saddle point and convex optimization problems

In this paper, we consider both a variant of Tseng’s modified forward-backward splitting method and an extension of Korpelevich’s method for solving generalized variational inequalities with Lipschitz continuous operators. By showing that these methods are special cases of the hybrid proximal extragradient (HPE) method introduced by Solodov and Svaiter, we derive iteration-complexity bounds for them … Read more

Iteration-complexity of first-order augmented Lagrangian methods for convex programming

This paper considers a special class of convex programming (CP) problems whose feasible regions consist of a simple compact convex set intersected with an affine manifold. We present first-order methods for this class of problems based on an inexact version of the classical augmented Lagrangian (AL) approach, where the subproblems are approximately solved by means … Read more

On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean

In this paper we analyze the iteration-complexity of the hybrid proximal extragradient (HPE) method for finding a zero of a maximal monotone operator recently proposed by Solodov and Svaiter. One of the key points of our analysis is the use of new termination criteria based on the $\varepsilon$-enlargement of a maximal monotone operator. The advantage … Read more