A Stochastic Semismooth Newton Method for Nonsmooth Nonconvex Optimization

In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian information of the smooth part of the objective function is available via calling stochastic first and second order oracles. The … Read more

Constrained Optimization with Low-Rank Tensors and Applications to Parametric Problems with PDEs

Low-rank tensor methods provide efficient representations and computations for high-dimensional problems and are able to break the curse of dimensionality when dealing with systems involving multiple parameters. We present algorithms for constrained nonlinear optimization problems that use low-rank tensors and apply them to optimal control of PDEs with uncertain parameters and to parametrized variational inequalities. … Read more

A proximal gradient method for ensemble density functional theory

The ensemble density functional theory is valuable for simulations of metallic systems due to the absence of a gap in the spectrum of the Hamiltonian matrices. Although the widely used self-consistent field iteration method can be extended to solve the minimization of the total energy functional with respect to orthogonality constraints, there is no theoretical … Read more

Adaptive Regularized Self-Consistent Field Iteration with Exact Hessian for Electronic Structure Calculation

The self-consistent field (SCF) iteration has been used ubiquitously for solving the Kohn-Sham (KS) equation or the minimization of the KS total energy functional with respect to orthogonality constraints in electronic structure calculations. Although SCF with heuristics such as charge mixing often works remarkably well on many problems, it is well known that its convergence … Read more

A New Relaxation Scheme for Mathematical Programs with Equilibrium Constraints

We present a new relaxation scheme for mathematical programs with equilibrium constraints (MPEC), where the complementarity constraints are replaced by a reformulation that is exact for the complementarity conditions corresponding to sufficiently non-degenerate complementarity components and relaxes only the remaining complementarity conditions. A positive parameter determines to what extent the complementarity conditions are relaxed. The … Read more

A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results

In this paper we modify the original primal-dual interior-point filter method proposed in [18] for the solution of nonlinear programming problems. We introduce two new optimality filter entries based on the objective function, and thus better suited for the purposes of minimization, and propose conditions for using inexact Hessians. We show that the global convergence … Read more

Primal-dual interior point methods for PDE-constrained optimization

This paper provides a detailed analysis of a primal-dual interior-point method for PDE-constrained optimization. Considered are optimal control problems with control constraints in $L^p$. It is shown that the developed primal-dual interior-point method converges globally and locally superlinearly. Not only the easier $L^\infty$-setting is analyzed, but also a more involved $L^q$-analysis, $q

A globally convergent primal-dual interior-point filter method for nonlinear programming

In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters. The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, … Read more