On the evaluation complexity of cubic regularization methods for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear optimization

We propose a new termination criteria suitable for potentially singular, zero or non-zero residual, least-squares problems, with which cubic regularization variants take at most $\mathcal{O}(\epsilon^{-3/2})$ residual- and Jacobian-evaluations to drive either the Euclidean norm of the residual or its gradient below $\epsilon$; this is the best-known bound for potentially singular nonlinear least-squares problems. We then … Read more

A Note About The Complexity Of Minimizing Nesterov’s Smooth Chebyshev-Rosenbrock Function

This short note considers and resolves the apparent contradiction between known worst-case complexity results for first and second-order methods for solving unconstrained smooth nonconvex optimization problems and a recent note by Jarre (2011) implying a very large lower bound on the number of iterations required to reach the solution’s neighbourhood for a specific problem with … Read more

Optimal Newton-type methods for nonconvex smooth optimization problems

We consider a general class of second-order iterations for unconstrained optimization that includes regularization and trust-region variants of Newton’s method. For each method in this class, we exhibit a smooth, bounded-below objective function, whose gradient is globally Lipschitz continuous within an open convex set containing any iterates encountered and whose Hessian is $\alpha-$Holder continuous (for … Read more

On the complexity of finding first-order critical points in constrained nonlinear optimization

The complexity of finding epsilon-approximate first-order critical points for the general smooth constrained optimization problem is shown to be no worse that O(epsilon^{-2}) in terms of function and constraints evaluations. This result is obtained by analyzing the worst-case behaviour of a first-order shorts-step homotopy algorithm consisting of a feasibility phase followed by an optimization phase, … Read more

Updating the regularization parameter in the adaptive cubic regularization algorithm

The adaptive cubic regularization method [Cartis, Gould, Toint, 2009-2010] has been recently proposed for solving unconstrained minimization problems. At each iteration of this method, the objective function is replaced by a cubic approximation which comprises an adaptive regularization parameter whose role is related to the local Lipschitz constant of the objective’s Hessian. We present new … Read more

On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming

We estimate the worst-case complexity of minimizing an unconstrained, nonconvex composite objective with a structured nonsmooth term by means of some first-order methods. We find that it is unaffected by the nonsmoothness of the objective in that a first-order trust-region or quadratic regularization method applied to it takes at most O($\epsilon^{-2}$) function-evaluations to reduce the … Read more

Complexity bounds for second-order optimality in unconstrained optimization

This paper examines worst-case evaluation bounds for finding weak minimizers in unconstrained optimization. For the cubic regularization algorithm, Nesterov and Polyak (2006) and Cartis, Gould and Toint (2010) show that at most O(epsilon^{-3}) iterations may have to be performed for finding an iterate which is within epsilon of satisfying second-order optimality conditions. We first show … Read more

Preconditioning and Globalizing Conjugate Gradients in Dual Space for Quadratically Penalized Nonlinear-Least Squares Problems

When solving nonlinear least-squares problems, it is often useful to regularize the problem using a quadratic term, a practice which is especially common in applications arising in inverse calculations. A solution method derived from a trust-region Gauss-Newton algorithm is analyzed for such applications, where, contrary to the standard algorithm, the least-squares subproblem solved at each … Read more

Solving structured nonlinear least-squares and nonlinear feasibility problems with expensive functions

We present an algorithm for nonlinear least-squares and nonlinear feasibility problems, i.e. for systems of nonlinear equations and nonlinear inequalities, which depend on the outcome of expensive functions for which derivatives are assumed to be unavailable. Our algorithm combines derivative-free techniques with filter trust-region methods to keep the number of expensive function evaluations low and … Read more

Evaluation complexity of adaptive cubic regularization methods for convex unconstrained optimization

The adaptive cubic regularization algorithms described in Cartis, Gould & Toint (2009, 2010) for unconstrained (nonconvex) optimization are shown to have improved worst-case efficiency in terms of the function- and gradient-evaluation count when applied to convex and strongly convex objectives. In particular, our complexity upper bounds match in order (as a function of the accuracy … Read more