Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization

Several efficient methods for derivative-free optimization (DFO) are based on the construction and maintenance of an interpolation model for the objective function. Most of these algorithms use special “geometry-improving” iterations, where the geometry (poisedness) of the underlying interpolation set is made better at the cost of one or more function evaluations. We show that such … Read more

Approximating Hessians in multilevel unconstrained optimization

We consider Hessian approximation schemes for large-scale multilevel unconstrained optimization problems, which typically present a sparsity and partial separability structure. This allows iterative quasi-Newton methods to solve them despite of their size. Structured finite-difference methods and updating schemes based on the secant equation are presented and compared numerically inside the multilevel trust-region algorithm proposed by … Read more

Nonlinear Stepsize Control, Trust Regions and Regularizations for Unconstrained Optimization

A general class of algorithms for unconstrained optimization is introduced, which subsumes the classical trust-region algorithm and two of its newer variants, as well as the cubic and quadratic regularization methods. A unified theory of global convergence to first-order critical points is then described for this class. An extension to projection-based trust-region algorithms for nonlinear … Read more

Numerical Experience with a Recursive Trust-Region Method for Multilevel Nonlinear Optimization

We consider an implementation of the recursive multilevel trust-region algorithm proposed by Gratton, Mouffe, Toint, Weber (2008) for bound-constrained nonlinear problems, and provide numerical experience on multilevel test problems. A suitable choice of the algorithm’s parameters is identified on these problems, yielding a satisfactory compromise between reliability and efficiency. The resulting default algorithm is then … Read more

Formulation and solution strategies for nonparametric nonlinear stochastic programs, with an application in finance

We consider a class of stochastic programming models where the uncertainty is classically represented using parametric distributions families. The parameters are then usually estimated together with the optimal value of the problem. However, misspecification of the underlying random variables often leads to irrealistic results when little is known about their true distributions. We propose to … Read more

LANCELOt_simple, a simple interface to LANCELOT B

We describe LANCELOT_simple, an interface to the LANCELOT B nonlinear optimization package within the GALAHAD} library (Gould, Orban, Toint, 2003) which ignores problem structure. The result is an easy-to-use Fortran 90 subroutine, with a small number of intuitively interpretable arguments. However, since structure is ignored, the means of presenting problems to the solver limited and … Read more

Multi-Secant Equations, Approximate Invariant Subspaces and Multigrid Optimization

New approximate secant equations are shown to result from the knowledge of (problem dependent) invariant subspace information, which in turn suggests improvements in quasi-Newton methods for unconstrained minimization. It is also shown that this type of information may often be extracted from the multigrid structure of discretized infinite dimensional problems. A new limited-memory BFGS using … Read more

A Retrospective Trust-Region Method for Unconstrained Optimization

We introduce a new trust-region method for unconstrained optimization where the radius update is computed using the model information at the current iterate rather than at the preceding one. The update is then performed according to how well the current model retrospectively predicts the value of the objective function at last iterate. Global convergence to … Read more

A multilevel algorithm for solving the trust-region subproblem

We present a multilevel numerical algorithm for the exact solution of the Euclidean trust-region subproblem. This particular subproblem typically arises when optimizing a nonlinear (possibly non-convex) objective function whose variables are discretized continuous functions, in which case the different levels of discretization provide a natural multilevel context. The trust-region problem is considered at the highest … Read more