A $\sqrt{5}/2$-approximation algorithm for optimal piecewise linear approximations of bounded variable products

We investigate the optimal piecewise linear approximation of the bivariate product $ xy $ over rectangular domains. More precisely, our aim is to minimize the number of simplices in the triangulation underlying the approximation, while respecting a prescribed approximation error. First, we show how to construct optimal triangulations consisting of up to five simplices. Using … Read more

On Piecewise Linear Approximations of Bilinear Terms: Structural Comparison of Univariate and Bivariate Mixed-Integer Programming Formulations

Bilinear terms naturally appear in many optimization problems. Their inherent nonconvexity typically makes them challenging to solve. One approach to tackle this difficulty is to use bivariate piecewise linear approximations for each variable product, which can be represented via mixed-integer linear programming (MIP) formulations. Alternatively, one can reformulate the variable products as a sum of … Read more

Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality

We present a solution framework for general alternating current optimal power flow (AC OPF) problems that include discrete decisions. The latter occur, for instance, in the context of the curtailment of renewables or the switching of power generation units and transmission lines. Our approach delivers globally optimal solutions and is provably convergent. We model AC … Read more

On Refinement Strategies for Solving MINLPs by Piecewise Linear Relaxations: A Generalized Red Refinement

We investigate the generalized red refinement for n-dimensional simplices that dates back to Freudenthal in a mixed-integer nonlinear program (MINLP) context. We show that the red refinement meets sufficient convergence conditions for a known MINLP solution framework that is essentially based on solving piecewise linear relaxations. In addition, we prove that applying this refinement procedure … Read more

Maximizing the storage capacity of gas networks: a global MINLP approach

In this paper, we study the transient optimization of gas networks, focusing in particular on maximizing the storage capacity of the network. We include nonlinear gas physics and active elements such as valves and compressors, which due to their switching lead to discrete decisions. The former is described by a model derived from the Euler … Read more

Solving Mixed-Integer Nonlinear Programs using Adaptively Refined Mixed-Integer Linear Programs

We propose a method for solving mixed-integer nonlinear programs (MINLPs) to global optimality by discretization of occuring nonlinearities. The main idea is based on using piecewise linear functions to construct mixed-integer linear program (MIP) relaxations of the underlying MINLP. In order to find a global optimum of the given MINLP we develope an iterative algorithm … Read more

GasLib – A Library of Gas Network Instances

The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances … Read more