On the Rank of Cutting-Plane Proof Systems

We introduce a natural abstraction of propositional proof systems that are based on cut- ting planes. This leads to a new class of proof systems that includes many well-known meth- ods, such as Gomory-Chvátal cuts, lift-and-project cuts, Sherali-Adams cuts, or split cuts. The rank of a proof system corresponds to the number of rounds that … Read more

A Refined Gomory-Chvátal Closure for Polytopes in the Unit Cube

We introduce a natural strengthening of Gomory-Chvátal cutting planes for the important class of 0/1-integer programming problems and study the properties of the elementary closure that arises from the new class of cuts. Most notably, we prove that the new closure is polyhedral, we characterize the family of all facet-defining inequalities, and we compare it … Read more

An FPTAS for Optimizing a Class of Low-Rank Functions Over a Polytope

We present a fully polynomial time approximation scheme (FPTAS) for optimizing a very general class of nonlinear functions of low rank over a polytope. Our approximation scheme relies on constructing an approximate Pareto-optimal front of the linear functions which constitute the given low-rank function. In contrast to existing results in the literature, our approximation scheme … Read more

A General Framework for Designing Approximation Schemes for Combinatorial Optimization Problems with Many Objectives Combined Into One

In this paper, we present a general framework for designing approximation schemes for combinatorial optimization problems in which the objective function is a combination of more than one function. Examples of such problems include those in which the objective function is a product or ratio of two linear functions, parallel machine scheduling problems with the … Read more

Integer-empty polytopes in the 0/1-cube with maximal Gomory-Chvátal rank

We provide a complete characterization of all polytopes P ⊆ [0,1]^n with empty integer hull whose Gomory-Chvátal rank is n (and, therefore, maximal). In particular, we show that the first Gomory- Chvátal closure of all these polytopes is identical. Article Download View Integer-empty polytopes in the 0/1-cube with maximal Gomory-Chvátal rank

The Gomory-Chvatal closure of a non-rational polytope is a rational polytope

The question as to whether the Gomory-Chvatal closure of a non-rational polytope is a polytope has been a longstanding open problem in integer programming. In this paper, we answer this question in the affirmative, by combining ideas from polyhedral theory and the geometry of numbers. Article Download View The Gomory-Chvatal closure of a non-rational polytope … Read more

Approximating the Least Core Value and Least Core of Cooperative Games with Supermodular Costs

We study the approximation of the least core value and the least core of supermodular cost cooperative games. We provide a framework for approximation based on oracles that approximately determine maximally violated constraints. This framework yields a (3 + \epsilon)-approximation algorithm for computing the least core value of supermodular cost cooperative games, and a polynomial-time … Read more

On the connection of the Sherali-Adams closure and border bases

The Sherali-Adams lift-and-project hierarchy is a fundamental construct in integer programming, which provides successively tighter linear programming relaxations of the integer hull of a polytope. We initiate a new approach to understanding the Sherali-Adams procedure by relating it to methods from computational algebraic geometry. Our main result is a refinement of the Sherali-Adams procedure that … Read more

Minimizing the sum of weighted completion times in a concurrent open shop

We study minimizing the sum of weighted completion times in a concurrent open shop. We give a primal-dual 2-approximation algorithm for this problem. We also show that several natural linear programming relaxations for this problem have an integrality gap of 2. Finally, we show that this problem is inapproximable within a factor strictly less than … Read more

Near-Optimal Solutions and Integrality Gaps for Almost All Instances of Single-Machine Precedence-Constrained Scheduling

We consider the problem of minimizing the weighted sum of completion times on a single machine subject to bipartite precedence constraints where all minimal jobs have unit processing time and zero weight, and all maximal jobs have zero processing time and unit weight. For various probability distributions over these instances–including the uniform distribution–we show several … Read more