A progressive barrier derivative-free trust-region algorithm for constrained optimization

We study derivative-free constrained optimization problems and propose a trust-region method that builds linear or quadratic models around the best feasible and and around the best infeasible solutions found so far. These models are optimized within a trust region, and the progressive barrier methodology handles the constraints by progressively pushing the infeasible solutions toward the … Read more

Order-based error for managing ensembles of surrogates in derivative-free optimization

We investigate surrogate-assisted strategies for derivative-free optimization using the mesh adaptive direct search (MADS) blackbox optimization algorithm. In particular, we build an ensemble of surrogate models to be used within the search step of MADS, and examine different methods for selecting the best model for a given problem at hand. To do so, we introduce … Read more

Computational study of valid inequalities for the maximum hBccut problem

We consider the maximum k-cut problem that consists in partitioning the vertex set of a graph into k subsets such that the sum of the weights of edges joining vertices in different subsets is maximized. We focus on identifying effective classes of inequalities to tighten the semidefinite programming relaxation. We carry out an experimental study … Read more

A Taxonomy of Constraints in Black-Box Simulation-Based Optimization

The types of constraints encountered in black-box simulation-based optimization problems differ significantly from those addressed in nonlinear programming. We introduce a characterization of constraints to address this situation. We provide formal definitions for several constraint classes and present illustrative examples in the context of the resulting taxonomy. This taxonomy, denoted KARQ, is useful for modeling … Read more

Use of a Biobjective Direct Search Algorithm in the Process Design of Material Science Applications

This work describes the application of a direct search method to the optimization of problems of real industrial interest, namely three new material science applications designed with the FactSage software. The search method is BiMADS, the biobjective version of the mesh adaptive direct search (MADS) algorithm, designed for blackbox optimization. We give a general description … Read more

Linear equalities in blackbox optimization

The Mesh Adaptive Direct Search (Mads) algorithm is designed for blackbox optimization problems subject to general inequality constraints. Currently, Mads does not support equalities, neither in theory nor in practice. The present work proposes extensions to treat problems with linear equalities whose expression is known. The main idea consists in reformulating the optimization problem into … Read more

Dynamic scaling in the Mesh Adaptive Direct Search algorithm for blackbox optimization

Blackbox optimization deals with situations in which the objective function and constraints are typically computed by launching a time-consuming computer sim- ulation. The subject of this work is the Mesh Adaptive Direct Search (MADS) class of algorithms for blackbox optimization. We propose a way to dynamically scale the mesh, which is the discrete spatial structure … Read more

Problem Formulations for Simulation-based Design Optimization using Statistical Surrogates and Direct Search

Typical challenges of simulation-based design optimization include unavailable gradients and unreliable approximations thereof, expensive function evaluations, numerical noise, multiple local optima and the failure of the analysis to return a value to the optimizer. One possible remedy to alleviate these issues is to use surrogate models in lieu of the computational models or simulations and … Read more

Reducing the Number of Function Evaluations in Mesh Adaptive Direct Search Algorithms

The mesh adaptive direct search (MADS) class of algorithms is designed for nonsmooth optimization, where the objective function and constraints are typically computed by launching a time-consuming computer simulation. Each iteration of a MADS algorithm attempts to improve the current best-known solution by launching the simulation at a finite number of trial points. Common implementations … Read more

The mesh adaptive direct search algorithm with treed Gaussian process surrogates

This work introduces the use of the treed Gaussian process (TGP) as a surrogate model within the mesh adaptive direct search (MADS) framework for constrained blackbox optimization. It extends the surrogate management framework (SMF) to nonsmooth optimization under general constraints. MADS uses TGP in two ways: one, as a surrogate for blackbox evaluations; and two, … Read more