A Taxonomy of Constraints in Simulation-Based Optimization

The types of constraints encountered in black-box and simulation-based optimization problems differ significantly from those treated in nonlinear programming. We introduce a characterization of constraints to address this situation. We provide formal definitions for several constraint classes and present illustrative examples in the context of the resulting taxonomy. This taxonomy, denoted QRAK, is useful for … Read more

Use of a Biobjective Direct Search Algorithm in the Process Design of Material Science Applications

This work describes the application of a direct search method to the optimization of problems of real industrial interest, namely three new material science applications designed with the FactSage software. The search method is BiMADS, the biobjective version of the mesh adaptive direct search (MADS) algorithm, designed for blackbox optimization. We give a general description … Read more

Linear equalities in blackbox optimization

The Mesh Adaptive Direct Search (Mads) algorithm is designed for blackbox optimization problems subject to general inequality constraints. Currently, Mads does not support equalities, neither in theory nor in practice. The present work proposes extensions to treat problems with linear equalities whose expression is known. The main idea consists in reformulating the optimization problem into … Read more

Dynamic scaling in the Mesh Adaptive Direct Search algorithm for blackbox optimization

Blackbox optimization deals with situations in which the objective function and constraints are typically computed by launching a time-consuming computer sim- ulation. The subject of this work is the Mesh Adaptive Direct Search (MADS) class of algorithms for blackbox optimization. We propose a way to dynamically scale the mesh, which is the discrete spatial structure … Read more

Problem Formulations for Simulation-based Design Optimization using Statistical Surrogates and Direct Search

Typical challenges of simulation-based design optimization include unavailable gradients and unreliable approximations thereof, expensive function evaluations, numerical noise, multiple local optima and the failure of the analysis to return a value to the optimizer. One possible remedy to alleviate these issues is to use surrogate models in lieu of the computational models or simulations and … Read more

Reducing the Number of Function Evaluations in Mesh Adaptive Direct Search Algorithms

The mesh adaptive direct search (MADS) class of algorithms is designed for nonsmooth optimization, where the objective function and constraints are typically computed by launching a time-consuming computer simulation. Each iteration of a MADS algorithm attempts to improve the current best-known solution by launching the simulation at a finite number of trial points. Common implementations … Read more

The mesh adaptive direct search algorithm with treed Gaussian process surrogates

This work introduces the use of the treed Gaussian process (TGP) as a surrogate model within the mesh adaptive direct search (MADS) framework for constrained blackbox optimization. It extends the surrogate management framework (SMF) to nonsmooth optimization under general constraints. MADS uses TGP in two ways: one, as a surrogate for blackbox evaluations; and two, … Read more

Snow water equivalent estimation using blackbox optimization

Accurate measurements of snow water equivalent (SWE) is an important factor in managing water resources for hydroelectric power generation. SWE over a catchment area may be estimated via kriging on measures obtained by snow monitoring devices positioned at strategic locations. The question studied in this paper is to find the device locations that minimize the … Read more

Use of quadratic models with mesh adaptive direct search for constrained black box optimization

We consider a derivative-free optimization, and in particular black box optimization, where the functions to be minimized and the functions representing the constraints are given by black boxes without derivatives. Two fundamental families of methods are available: model-based methods and directional direct search algorithms. This work exploits the flexibility of the second type of methods … Read more

Calculating optimal conditions for alloy and process design using thermodynamic and property databases, the FactSage software and the Mesh Adaptive Direct Search algorithm

During alloy and process design, it is often desired to identify regions of design or process variables for which certain calculated functions have optimal values under various constraints, for example: compositions of minimum liquidus temperature in an N-component alloy; compositions where the amount of precipitate in a given phase is maximized or minimized during annealing … Read more