On the convergence of iterative schemes for solving a piecewise linear system of equations

This paper is devoted to studying the global and finite convergence of the semi-smooth Newton method for solving a piecewise linear system that arises in cone-constrained quadratic programming problems and absolute value equations. We first provide a negative answer via a counterexample to a conjecture on the global and finite convergence of the Newton iteration … Read more

On the Weak and Strong Convergence of a Conceptual Algorithm for Solving Three Operator Monotone Inclusions

In this paper, a conceptual algorithm modifying the forward-backward-half-forward (FBHF) splitting method for solving three operator monotone inclusion problems is investigated. The FBHF splitting method adjusts and improves Tseng’s forward-backward-forward (FBF) split- ting method when the inclusion problem has a third-part operator that is cocoercive. The FBHF method recovers the FBF iteration (when this aforementioned … Read more

On Inexact Accelerated Proximal Gradient Methods with Relative Error Rules

One of the most popular and important first-order iterations that provides optimal complexity of the classical proximal gradient method (PGM) is the “Fast Iterative Shrinkage/Thresholding Algorithm” (FISTA). In this paper, two inexact versions of FISTA for minimizing the sum of two convex functions are studied. The proposed schemes inexactly solve their subproblems by using relative … Read more

Conditional Extragradient Algorithms for Solving Constrained Variational Inequalities

In this paper, we generalize the classical extragradient algorithm for solving variational inequality problems by utilizing non-null normal vectors of the feasible set. In particular, conceptual algorithms are proposed with two different linesearches. We then establish convergence results for these algorithms under mild assumptions. Our study suggests that non-null normal vectors may significantly improve convergence … Read more

An inexact strategy for the projected gradient algorithm in vector optimization problems on variable ordered spaces

Variable order structures model situations in which the comparison between two points depends on a point-to-cone map. In this paper, an inexact projected gradient method for solving smooth constrained vector optimization problems on variable ordered spaces is presented. It is shown that every accumulation point of the generated sequence satisfies the first order necessary optimality … Read more

On proximal subgradient splitting method for minimizing the sum of two nonsmooth convex functions

In this paper we present a variant of the proximal forward-backward splitting method for solving nonsmooth optimization problems in Hilbert spaces, when the objective function is the sum of two nondifferentiable convex functions. The proposed iteration, which will be call the Proximal Subgradient Splitting Method, extends the classical projected subgradient iteration for important classes of … Read more

The inexact projected gradient method for quasiconvex vector optimization problems

Vector optimization problems are a generalization of multiobjective optimization in which the preference order is related to an arbitrary closed and convex cone, rather than the nonnegative octant. Due to its real life applications, it is important to have practical solution approaches for computing. In this work, we consider the inexact projected gradient-like method for … Read more

A Relaxed-Projection Splitting Algorithm for Variational Inequalities in Hilbert Spaces

We introduce a relaxed-projection splitting algorithm for solving variational inequalities in Hilbert spaces for the sum of nonsmooth maximal monotone operators, where the feasible set is defined by a nonlinear and nonsmooth continuous convex function inequality. In our scheme, the orthogonal projections onto the feasible set are replaced by projections onto separating hyperplanes. Furthermore, each … Read more

A strongly convergent proximal bundle method for convex minimization in Hilbert spaces

A key procedure in proximal bundle methods for convex minimization problems is the definition of stability centers, which are points generated by the iterative process that successfully decrease the objective function. In this paper we study a different stability-center classification rule for proximal bundle methods. We show that the proposed bundle variant has three particularly … Read more

A direct splitting method for nonsmooth variational inequalities

We propose a direct splitting method for solving nonsmooth variational inequality problems in Hilbert spaces. The weak convergence is established, when the operator is the sum of two point-to-set and monotone operators. The proposed method is a natural extension of the incremental subgradient method for nondifferentiable optimization, which explores strongly the structure of the operator … Read more