Numerical estimation of the relative entropy of entanglement

We propose a practical algorithm for the calculation of the relative entropy of entanglement(REE), defined as the minimum relative entropy between a state and the set of states with positive partial transpose. Our algorithm is based on a practical semi-definite cutting plane approach. In low dimensions the implementation of the algorithm in MATLAB provides an … Read more

Shrink-Wrapping trajectories for Linear Programming

Hyperbolic Programming (HP) –minimizing a linear functional over an affine subspace of a finite-dimensional real vector space intersected with the so-called hyperbolicity cone– is a class of convex optimization problems that contains well-known Linear Programming (LP). In particular, for any LP one can readily provide a sequence of HP relaxations. Based on these hyperbolic relaxations, … Read more

Controlling the dose distribution with gEUD-type constraints within the convex IMRT optimization framework

Radiation therapy is an important modality in treating various cancers. Various treatment planning and delivery technologies have emerged to support Intensity Modulated Radiation Therapy (IMRT), creating significant opportunities to advance this type of treatment. We investigate the possibility of including the dose prescription, specified by the DVH, within the convex optimization framework for inverse IMRT … Read more

The continuous d-step conjecture for polytopes

The curvature of a polytope, defined as the largest possible total curvature of the associated central path, can be regarded as the continuous analogue of its diameter. We prove the analogue of the result of Klee and Walkup. Namely, we show that if the order of the curvature is less than the dimension $d$ for … Read more

On hyperbolicity cones associated with elementary symmetric polynomials

Elementary symmetric polynomials can be thought of as derivative polynomials of $E_n(x)=\prod_{i=1,\ldots,n} x_i$. Their associated hyperbolicity cones give a natural sequence of relaxations for $\Re^n_+$. We establish a recursive structure for these cones, namely, that the coordinate projections of these cones are themselves hyperbolicity cones associated with elementary symmetric polynomials. As a consequence of this … Read more

Central path curvature and iteration-complexity for redundant Klee-Minty cubes

We consider a family of linear optimization problems over the n-dimensional Klee-Minty cube and show that the central path may visit all of its vertices in the same order as simplex methods do. This is achieved by carefully adding an exponential number of redundant constraints that forces the central path to take at least 2^n-2 … Read more

Polytopes and Arrangements : Diameter and Curvature

We introduce a continuous analogue of the Hirsch conjecture and a discrete analogue of the result of Dedieu, Malajovich and Shub. We prove a continuous analogue of the result of Holt and Klee, namely, we construct a family of polytopes which attain the conjectured order of the largest total curvature. Citation AdvOL-Report #2006/09 Advanced Optimization … Read more