An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results

We introduce a new distribution center (DC) location model that incorporates working inventory and safety stock inventory costs at the distribution centers. In addition, the model incorporates transport costs from the suppliers to the DCs that explicitly reflect economies of scale through the use of a fixed cost term. The model is formulated as a … Read more

Polyhedral results for two-connected networks with bounded rings

We study the polyhedron associated with a network design problem which consists in determining at minimum cost a two-connected network such that the shortest cycle to which each edge belongs (a “ring”) does not exceed a given length K. We present here a new formulation of the problem and derive facet results for different classes … Read more

A Hybrid GRASP with Perturbations for the Steiner Problem in Graphs

We propose and describe a hybrid GRASP with weight perturbations and adaptive path-relinking heuristic (HGP+PR) for the Steiner problem in graphs. In this multi-start approach, the greedy randomized construction phase of a GRASP is replaced by the use of several construction heuristics with a weight perturbation strategy that combines intensification and diversification elements, as in … Read more

Parallel Cooperative Approaches for the Labor Constrained Scheduling Problem

In this paper we consider the labor constrained scheduling problem (LCSP), in which a set of jobs to be processed is subject to precedence and labor requirement constraints. Each job has a specified processing time and a labor requirements profile, which typically varies as the job is processed. Given the amount of labor available at … Read more

The Integration of an Interior-Point Cutting-Plane Method within a Branch-and-Price Algorithm

This paper presents a novel integration of interior point cutting plane methods within branch-and-price algorithms. Unlike the classical method, columns are generated at a “central” dual solution by applying the analytic centre cutting plane method (ACCPM) on the dual of the full master problem. First, we introduce improvements to ACCPM. We propose a new procedure … Read more

Realignment in the NFL

The National Football League (NFL) in the United States will expand to 32 teams in 2002 with the addition of a team in Houston. At that point, the league will be realigned into eight divisions, each containing four teams. We describe a branch-and-cut algorithm for minimizing the sum of intradivisional travel distances. We consider first … Read more

Linear time approximation scheme for the multiprocessor open shop problem

For the $r$-stage open shop problem with identical parallel machines at each stage and the minimum makespan criterion, an approximation scheme is constructed with running time $O(nrm + C(m,\eps))$ , where $n$ is the number of jobs, $m$ is the total number of machines, and $C(m,\eps)$ is a function independent of $n$. CitationDiscrete Appl. Math. … Read more

A 3/2-Approximation algorithm for two-machine flow-shop sequencing subject to release dates

The two-machine flow shop sequencing problem with arbitrary release dates of jobs and the minimum makespan criterion is considered. The problem is known to be NP-hard, and the best known approximation algorithms are those of Potts (1985) with a worst-case performance ratio of 5/3 and running time $O(n^3 \log n)$, and a polynomial time approximation … Read more

Minimum Risk Arbitrage with Risky Financial Contracts

For a set of financial securities specified by their expected returns and variance/covariances we propose the concept of minimum risk arbitrage, characterize conditions under which such opportunities may exist. We use conic duality and convex analysis to derive these characterizations. For practical computation a decidability result on the existence of an arbitrage opportunity is derived. … Read more

Geometrical Heuristics for Multiprocessor Flowshop Scheduling with Uniform Machines at Each Stage

We consider the multi-stage multiprocessor flowshop scheduling problem with uniform machines at each stage and the minimum makespan objective. Using a vector summation technique, three polynomial-time heuristics are developed with absolute worst-case performance guarantees. As a direct corollary, in the special case of the ordinary flowshop problem we come to the best approximation algorithms (both … Read more