Constraint Programming for LNG Ship Scheduling and Inventory Management

We propose a constraint programming approach for the optimization of inventory routing in the liquefied natural gas industry. We present two constraint programming models that rely on a disjunctive scheduling representation of the problem. We also propose an iterative search heuristic to generate good feasible solutions for these models. Computational results on a set of … Read more

Polynomial time algorithms for the Minimax Regret Uncapacitated Lot Sizing Model

We study the Minimax Regret Uncapacitated Lot Sizing (MRULS) model, where the production cost function and the demand are subject to uncertainty. We propose a polynomial time algorithm which solves the MRULS model in O(n^6) time. We improve this running time to O(n^5) when only the demand is uncertain, and to O(n^4) when only the … Read more

Minimum concave cost flows in capacitated grid networks

We study the minimum concave cost flow problem over a two-dimensional grid network (CFG), where one dimension represents time ($1\le t\le T$) and the other dimension represents echelons ($1\le l\le L$). The concave function over each arc is given by a value oracle. We give a polynomial-time algorithm for finding the optimal solution when the … Read more

Dynamic Cost Allocation for Economic Lot Sizing Games

We consider a cooperative game defined by an economic lot sizing problem with concave ordering costs over a finite time horizon, in which each player faces demand for a single product in each period and coalitions can pool orders. We show how to compute a dynamic cost allocation in the strong sequential core of this … Read more

Two-Stage Decomposition Algorithms for Single Product Maritime Inventory Routing

We present two decomposition algorithms for single product deep-sea maritime inventory routing problems (MIRPs) that possess a core substructure common in many real-world applications. The problem involves routing vessels, each belonging to a particular vessel class, between loading and discharging ports, each belonging to a particular region. Our algorithms iteratively solve a MIRP by zooming … Read more

Inventory control for a perishable product with non-stationary demand and service level constraints

We study the practical production planning problem of a food producer facing a non-stationary erratic demand for a perishable product with a fixed life time. In meeting the uncertain demand, the food producer uses a FIFO issuing policy. The food producer aims at meeting a certain service level at lowest cost. Every production run a … Read more

Scheduling optimization of a real flexible job shop including side constraints regarding maintenance, fixtures, and night shifts

We present a generic iterative scheduling procedure for the scheduling of a real flexible job shop, the so-called multitask cell at GKN Aerospace Engine Systems in Sweden. A time-indexed formulation of the problem is presented including side constraints regarding preventive maintenance, fixture availability, and unmanned night shifts. This paper continues the work in Thörnblad et … Read more

A competitive iterative procedure using a time-indexed model for solving flexible job shop scheduling problems

We investigate the efficiency of a discretization procedure utilizing a time-indexed mathematical optimization model for finding accurate solutions to flexible job shop scheduling problems considering objectives comprising the makespan and the tardiness of jobs, respectively. The time-indexed model is used to find solutions to these problems by iteratively employing time steps of decreasing length. The … Read more

Approximate Dynamic Programming for a Class of Long-Horizon Maritime Inventory Routing Problems

We study a deterministic maritime inventory routing problem with a long planning horizon. For instances with many ports and many vessels, mixed-integer linear programming (MIP) solvers often require hours to produce good solutions even when the planning horizon is 90 or 120 periods. Building on the recent successes of approximate dynamic programming (ADP) for road-based … Read more

Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems

Robust optimization is a methodology that has gained a lot of attention in the recent years. This is mainly due to the simplicity of the modeling process and ease of resolution even for large scale models. Unfortunately, the second property is usually lost when the cost function that needs to be robustified is not concave … Read more