An exact solution approach for an electric bus dispatch problem

We study how to efficiently plan the daily bus dispatch operation within a public transport terminal working with a fleet of electric buses. This requires to formulate and solve a new variant of the Vehicle Scheduling Problem model, in which one has to assign trip itineraries to each vehicle considering that driving ranges are limited, … Read more

Cost-Sharing Mechanism Design for Ride-Sharing

In this paper, we focus on the cost-sharing problem for ride-sharing that determines how to allocate the total ride cost between the driver and the passengers. We identify the properties that a desirable cost-sharing mechanism should have and develop a general framework which can be used to create specific cost-sharing mechanisms. We propose specific mechanisms … Read more

Exact Methods for the Traveling Salesman Problem with Multiple Drones

Drone delivery is drawing increasing attention in last-mile delivery. Effective solution methods to solve decision-making problems arising in drone delivery allow to run and assess drone delivery systems. In this paper, we focus on delivery systems with a single traditional vehicle and multiple drones working in tandem to fulfill customer requests. We address the Traveling … Read more

The Dynamic Freight Routing Problem for Less-than-Truckload Carriers

Less-than-Truckload (LTL) carriers transport freight shipments from origins to destinations by consolidating freight using a network of terminals. As daily freight quantities are uncertain, carriers dynamically adjust planned freight routes on the day of operations. We introduce the Dynamic Freight Routing Problem (DFRP) and model this problem as a Markov Decision Process (MDP). To overcome … Read more

Stochastic Inventory Routing with Time-based Shipment Consolidation

Inspired by the retail industry, we introduce a fundamentally new approach towards stochastic inventory routing by replenishing retailers from a central warehouse using a time-based shipment consolidation policy. Such a time-based dispatching policy, where retailers facing stochastic demand are repetitively replenished at fixed times, is essential in practice. It allows for easy incorporation with dependent … Read more

Dynamic Discretization Discovery for Solving the Continuous Time Inventory Routing Problem with Out-and-Back Routes

In time dependent models, the objective is to find the optimal times (continuous) at which activities occur and resources are utilized. These models arise whenever a schedule of activities needs to be constructed. A common approach consists of discretizing the planning time and then restricting the decisions to those time points. However, this approach leads … Read more

Planning the City Operations of a Parcel Express Company

We introduce an interesting and challenging routing and scheduling problem arising in the city operations of SF Express, a large package express carrier in China. Vehicles execute multiple trips during a planning horizon spanning multiple shifts, where a trip can involve deliveries only, pickups only, or deliveries followed by pickups. Complicating factors include split deliveries … Read more

Short-Term Inventory-Aware Equipment Management in Service Networks

Logistics companies often operate a heterogeneous fleet of equipment to support their service network operations. This introduces a layer of planning complexity as facilities need to maintain appropriate levels of equipment types to support operations throughout the planning horizon. We formulate an optimization model that minimizes the cost of executing a load plan, assuming knowledge … Read more

Solving the Time Dependent Minimum Tour Duration and Delivery Man Problems with Dynamic Discretization Discovery

In this paper, we present exact methods for solving the Time Dependent Minimum Duration Problem (TDMTDP) and the Time Dependent Delivery Man Problem (TD-DMP). Both methods are based on a Dynamic Discretization Discovery (DDD) approach for solving the Time Dependent Traveling Salesman Problem with Time Windows (TD-TSPTW). Unlike the TD-TSPTW, the problems we consider in … Read more

A branch-and-price method for the vehicle allocation problem

The Vehicle Allocation Problem (VAP) consists of allocating a fleet of vehicles to attend to the expected demand for freight transportation between terminals along a finite multiperiod planning horizon. The objective is to maximize the profits generated for the completed services. The previous deterministic and stochastic approaches used heuristic procedures and approximations for solving large-scale … Read more