On parametric formulations for the Asymmetric Traveling Salesman Problem

The traveling salesman problem is a widely studied classical combinatorial problem for which there are several integer linear formulations. In this work, we consider the Miller-Tucker-Zemlin (MTZ), Desrochers-Laporte (DL) and Single Commodity Flow (SCF) formulations. We argue that the choice of some parameters of these formulations is arbitrary and, therefore, there are families of formulations … Read more

Generator Subadditive Functions for Mixed-Integer Programs

For equality-constrained linear mixed-integer programs (MIP) defined by rational data, it is known that the subadditive dual is a strong dual and that there exists an optimal solution of a particular form, termed generator subadditive function. Motivated by these results, we explore the connection between Lagrangian duality, subadditive duality and generator subadditive functions for general … Read more

An exact solution approach for an electric bus dispatch problem

We study how to efficiently plan the daily bus dispatch operation within a public transport terminal working with a fleet of electric buses. This requires to formulate and solve a new variant of the Vehicle Scheduling Problem model, in which one has to assign trip itineraries to each vehicle considering that driving ranges are limited, … Read more

An Exact Solution Method for the TSP with Drone Based on Decomposition

The Traveling Salesperson Problem with Drone (TSP–D) is a routing model in which a given set of customer locations must be visited in the least amount of time, either by a truck route starting and ending at a depot or by a drone dispatched from the truck en route. We study the TSP–D model and … Read more

On a class of stochastic programs with exponentially many scenarios

We consider a class of stochastic programs whose uncertain data has an exponential number of possible outcomes, where scenarios are affinely parametrized by the vertices of a tractable binary polytope. Under these conditions, we propose a novel formulation that introduces a modest number of additional variables and a class of inequalities that can be efficiently … Read more

Fixed-charge transportation problems on trees

We consider a class of fixed-charge transportation problems over graphs. We show that this problem is strongly NP-hard, but solvable in pseudo-polynomial time over trees using dynamic programming. We also show that the LP formulation associated to the dynamic program can be obtained from extended formulations of single-node flow polytopes. Given these results, we present … Read more

Improving the integer L-shaped method

We consider the integer L-shaped method for two-stage stochastic integer programs. To improve the performance of the algorithm, we present and combine two strategies. First, to avoid time-consuming exact evaluations of the second-stage cost function, we propose a simple modification that alternates between linear and mixed-integer subproblems. Then, to better approximate the shape of the … Read more