The Multiple Part Type Cyclic Flow Shop Robotic Cell Scheduling Problem: A Novel and Comprehensive Mixed Integer Linear Programming Approach

This paper considers the problem of cyclic ow shop robotic cell scheduling deploying several single and dual gripper robots. In this problem, dierent part types are successively processed on multiple machines with dierent pickup criteria including free pickup, pickup within time-windows and no-waiting times. The parts are transported between the machines by the robots. We … Read more

Capacitated ring arborescence problems with profits

In this work we introduce profit-oriented capacitated ring arborescence problems and present exact and heuristic algorithms. These combinatorial network design problems ask for optimized bi-level networks taking into account arc costs and node profits. Solutions combine circuits on the inner level with arborescences on the outer level of the networks. We consider the prize-collecting, the … Read more

A Stochastic Programming Approach for Electric Vehicle Charging Network Design

Advantages of electric vehicles (EV) include reduction of greenhouse gas and other emissions, energy security, and fuel economy. The societal benefits of large-scale adoption of EVs cannot be realized without adequate deployment of publicly accessible charging stations. We propose a two-stage stochastic programming model to determine the optimal network of charging stations for a community … Read more

The Selective Traveling Salesman Problem with Draught Limits

This paper introduces the Selective Traveling Salesman Problem with Draught Limits, an extension of Traveling Salesman Problem with Draught Limits, wherein the goal is to design maximal profit tour respecting draught limit constraints of the visited ports. We propose a mixed integer linear programming formulation for this problem. The proposed mixed integer program is used … Read more

Recent Progress Using Matheuristics for Strategic Maritime Inventory Routing

This paper presents an extensive computational study of simple, but prominent matheuristics (i.e., heuristics that rely on mathematical programming models) to fi nd high quality ship schedules and inventory policies for a class of maritime inventory routing problems. Our computational experiments are performed on a set of the publicly available MIRPLib instances. This class of inventory … Read more

A Robust Approach to the Capacitated Vehicle Routing Problem with Uncertain Costs

We investigate a robust approach for solving the Capacitated Vehicle Routing Problem (CVRP) with uncertain travel times. It is based on the concept of K-adaptability, which allows to calculate a set of k feasible solutions in a preprocessing phase before the scenario is revealed. Once a scenario occurs, the corresponding best solution may be picked … Read more

The Dynamic Dispatch Waves Problem for Same-Day Delivery

We study same-day delivery systems by formulating the Dynamic Dispatch Waves Problem (DDWP), which models a distribution center where geographically located delivery orders realize dynamically throughout the day. At each decision epoch (wave), the system’s operator chooses whether or not to dispatch a vehicle route loaded with orders ready for service, to minimize vehicle travel … Read more

A Branch-and-Price Algorithm for the Vehicle Routing Problem with Roaming Delivery Locations

We study the vehicle routing problem with roaming delivery locations in which the goal is to find a least-cost set of delivery routes for a fleet of capacitated vehicles and in which a customer order has to be delivered to the trunk of the customer’s car during the time that the car is parked at … Read more

Vehicle Routing Problems with Time Windows and Convex Node Costs

We consider a variant of the vehicle routing problems with time windows, where the objective includes the inconvenience cost modeled by a convex function on each node. We formulate this mixed integer convex program using a novel set partitioning formulation, by considering all combinations of routes and block structures over the routes. We apply a … Read more

Extended Formulations and Branch-and-Cut Algorithms for the Black-and-White Traveling Salesman Problem

In this paper we study integer linear programming models and develop branch-and-cut algorithms to solve the Black-and-White Traveling Salesman Problem (BWTSP) (Bourgeois et al., 2003) which is a variant of the well known Traveling Salesman Problem (TSP). Two strategies to model the BWTSP have been used in the literature. The problem is either modeled on … Read more