PROACTIVE ENERGY MANAGEMENT FOR NEXT-GENERATION BUILDING SYSTEMS

We present a proactive energy management framework that integrates predictive dynamic building models and day-ahead forecasts of disturbances affecting efficiency and costs. This enables an efficient management of resources and an accurate prediction of the daily electricity demand profile. The strategy is based on the on-line solution of mixed-integer nonlinear programming problems. The framework is … Read more

On-Line Economic Optimization of Energy Systems Using Weather Forecast Information

We establish an on-line optimization framework to exploit weather forecast information in the operation of energy systems. We argue that anticipating the weather conditions can lead to more proactive and cost-effective operations. The framework is based on the solution of a stochastic dynamic real-time optimization (D-RTO) problem incorporating forecasts generated from a state-of-the-art weather prediction … Read more

On the Optimal On-Line Management of Photovoltaic-Hydrogen Hybrid Energy Systems

We present an on-line management strategy for photovoltaic-hydrogen (PV-H2) hybrid energy systems. The strategy follows a receding-horizon principle and exploits solar radiation forecasts and statistics generated through a Gaussian process model. We demonstrate that incorporating forecast information can dramatically improve the reliability and economic performance of these promising energy production devices. Article Download View On … Read more

Dantzig-Wolfe and block coordinate-descent decomposition in large-scale integrated refinery-planning

The integrated refinery-planning (IRP), an instrumental problem in the petroleum industry, is made of several subsystems, each of them involving a large number of decisions. Despite the complexity of the overall planning problem, this work presents a mathematical model of the refinery operations char acterized by complete horizontal integration of subsystems from crude oil purchase … Read more

Derivative Free Optimization Methods for Optimizing Stirrer Configurations

In this paper a numerical approach for the optimization of stirrer configurations is presented. The methodology is based on a flow solver, and a mathematical optimization tool, which are integrated into an automated procedure. The flow solver is based on the discretization of the incompressible Navier-Stokes equations by means of a fully conservative finite-volume method … Read more

Survey of Derivative Free Optimization Methods based on Interpolation

In this survey article we give the basic description of the interpolation based derivative free optimization methods and their variants. We review the recent contributions dealing with the maintaining the geometry of the interpolation set, the management of the trust region radius and the stopping criteria. Derivative free algorithms developed for problems with some structure … Read more

A Population Based Approach for Hard Global Optimization Problems Based on Dissimilarity Measures

When dealing with extremely hard global optimization problems, i.e. problems with a large number of variables and a huge number of local optima, heuristic procedures are the only possible choice. In this situation, lacking any possibility of guaranteeing global optimality for most problem instances, it is quite difficult to establish rules for discriminating among different … Read more

RIOTS_95–a MATLAB Toolbox for Solving General Optimal Control Problems And Its Applications to Chemical Processes

RIOTS_95 is a group of programs and utilities, written mostly in C, Fortran and M-file scripts and designed as a toolbox for MATLAB, that provides an interactive environment for solving a very broad class of optimal control problems (OCP’s). RIOTS_95 comes pre-compiled for use with the Windows 95/98/2000 or Windows NT operating systems. The user’s … Read more

Nonlinear Model Predictive Control via Feasibility-Perturbed Sequential Quadratic Programming

Model predictive control requires the solution of a sequence of continuous optimization problems that are nonlinear if a nonlinear model is used for the plant. We describe briefly a trust-region feasibility-perturbed sequential quadratic programming algorithm (developed in a companion report), then discuss its adaptation to the problems arising in nonlinear model predictive control. Computational experience … Read more

Efficient Algorithms for Large Scale Global Optimization: Lennard-Jones clusters

A standard stochastic global optimization method is applied to the challenging problem of finding the minimum energy conformation of cluster of identical atoms interacting through the Lennard-Jones potential. The method proposed is based on the use of a two-phase local search procedure which is capable of significantly enlarge the basin of attraction of the global … Read more