Models and Solution Techniques for Production Planning Problems with Increasing Byproducts

We consider a production planning problem where the production process creates a mixture of desirable products and undesirable byproducts. In this production process, at any point in time the fraction of the mixture that is an undesirable byproduct increases monotonically as a function of the cumulative mixture production up to that time. The mathematical formulation … Read more

Valid Inequalities Based on Demand Propagation for Chemical Production Scheduling MIP Models

The planning of chemical production often involves the optimization of the size of the tasks to be performed subject to unit capacity constraints, as well as inventory constraints for intermediate materials. While several mixed-integer programming (MIP) models have been proposed that account for these features, the development of tightening methods for these formulations has received … Read more

Euclidean Distance Matrix Completion Problems

A Euclidean distance matrix is one in which the $(i,j)$ entry specifies the squared distance between particle $i$ and particle $j$. Given a partially-specified symmetric matrix $A$ with zero diagonal, the Euclidean distance matrix completion problem (EDMCP) is to determine the unspecified entries to make $A$ a Euclidean distance matrix. We survey three different approaches … Read more

PROACTIVE ENERGY MANAGEMENT FOR NEXT-GENERATION BUILDING SYSTEMS

We present a proactive energy management framework that integrates predictive dynamic building models and day-ahead forecasts of disturbances affecting efficiency and costs. This enables an efficient management of resources and an accurate prediction of the daily electricity demand profile. The strategy is based on the on-line solution of mixed-integer nonlinear programming problems. The framework is … Read more

On-Line Economic Optimization of Energy Systems Using Weather Forecast Information

We establish an on-line optimization framework to exploit weather forecast information in the operation of energy systems. We argue that anticipating the weather conditions can lead to more proactive and cost-effective operations. The framework is based on the solution of a stochastic dynamic real-time optimization (D-RTO) problem incorporating forecasts generated from a state-of-the-art weather prediction … Read more

On the Optimal On-Line Management of Photovoltaic-Hydrogen Hybrid Energy Systems

We present an on-line management strategy for photovoltaic-hydrogen (PV-H2) hybrid energy systems. The strategy follows a receding-horizon principle and exploits solar radiation forecasts and statistics generated through a Gaussian process model. We demonstrate that incorporating forecast information can dramatically improve the reliability and economic performance of these promising energy production devices. ArticleDownload View PDF

Dantzig-Wolfe and block coordinate-descent decomposition in large-scale integrated refinery-planning

The integrated refinery-planning (IRP), an instrumental problem in the petroleum industry, is made of several subsystems, each of them involving a large number of decisions. Despite the complexity of the overall planning problem, this work presents a mathematical model of the refinery operations char acterized by complete horizontal integration of subsystems from crude oil purchase … Read more

Derivative Free Optimization Methods for Optimizing Stirrer Configurations

In this paper a numerical approach for the optimization of stirrer configurations is presented. The methodology is based on a flow solver, and a mathematical optimization tool, which are integrated into an automated procedure. The flow solver is based on the discretization of the incompressible Navier-Stokes equations by means of a fully conservative finite-volume method … Read more

Survey of Derivative Free Optimization Methods based on Interpolation

In this survey article we give the basic description of the interpolation based derivative free optimization methods and their variants. We review the recent contributions dealing with the maintaining the geometry of the interpolation set, the management of the trust region radius and the stopping criteria. Derivative free algorithms developed for problems with some structure … Read more

A Population Based Approach for Hard Global Optimization Problems Based on Dissimilarity Measures

When dealing with extremely hard global optimization problems, i.e. problems with a large number of variables and a huge number of local optima, heuristic procedures are the only possible choice. In this situation, lacking any possibility of guaranteeing global optimality for most problem instances, it is quite difficult to establish rules for discriminating among different … Read more