FINITE ELEMENT MODEL UPDATING FOR STRUCTURAL APPLICATIONS

A novel method for performing model updating on finite element models is presented. The approach is particularly tailored to modal analyses of buildings, by which the lowest frequencies, obtained by using sensors and system identification approaches, need to be matched to the numerical ones predicted by the model. This is done by optimizing some unknown … Read more

Optimal Installation for Electric Vehicle Wireless Charging Lanes

Range anxiety, the persistent worry about not having enough battery power to complete a trip, remains one of the major obstacles to widespread electric-vehicle adoption. As cities look to attract more users to adopt electric vehicles, the emergence of wireless in-motion car charging technology presents itself as a solution to range anxiety. For a limited … Read more

Adjustable robust strategies for flood protection

Flood protection is of major importance to many flood-prone regions and involves substantial investment and maintenance costs. Modern flood risk management requires often to determine a cost-efficient protection strategy, i.e., one with lowest possible long run cost and satisfying flood protection standards imposed by the regulator throughout the entire planning horizon. There are two challenges … Read more

Free-Floating Bike Sharing: Solving Real-life Large-scale Static Rebalancing Problems

Free-floating bike sharing (FFBS) is an innovative bike sharing model. FFBS saves on start-up cost, in comparison to station-based bike sharing (SBBS), by avoiding construction of expensive docking stations and kiosk machines. FFBS prevents bike theft and offers significant opportunities for smart management by tracking bikes in real-time with built-in GPS. However, like SBBS, the … Read more

Optimal design of multiphase composites under elastodynamic loading

An algorithm is proposed to optimize the performance of multiphase structures (composites) under elastodynamic loading conditions. The goal is to determine the distribution of material in the structure such that the time-averaged total stored energy of structure is minimized. A penalization strategy is suggested to avoid the checkerboard instability, simultaneously to generate near 0-1 topologies. … Read more

Sparse optimization for inverse problems in atmospheric modelling

We consider inverse problems in atmospheric modelling. Instead of using the ordinary least squares, we add a weighting matrix based on the topology of measurement points and show the connection with Bayesian modelling. Since the source–receptor sensitivity matrix is usually ill-conditioned, the problem is often regularized, either by perturbing the objective function or by modifying … Read more

Optimal scheduling for replacing perimeter guarding unmanned aerial vehicles

Guarding the perimeter of an area in order to detect potential intruders is an important task in a variety of security-related applications. This task can in many circumstances be performed by a set of camera-equipped unmanned aerial vehicles (UAVs). Such UAVs will occasionally require refueling or recharging, in which case they must temporarily be replaced … Read more

Mathematical Programming techniques in Water Network Optimization

In this article we survey mathematical programming approaches to problems in the field of water network optimization. Predominant in the literature are two different, but related problem classes. One can be described by the notion of network design, while the other is more aptly termed by network operation. The basic underlying model in both cases … Read more

A Low-Memory Approach For Best-State Estimation Of Hidden Markov Models With Model Error

We present a low-memory approach for the best-state estimate (data assimilation) of hidden Markov models where model error is considered. In particular, our findings apply for the 4D- Var framework. The novelty of our approach resides in the fact that the storage needed by our estimation framework, while including model error, is dramatically reduced from … Read more

Improving Robust Rolling Stock Circulation in Rapid Transit Networks

The routing of the rolling stock depends strongly on the rolling stock assignment to di erent opera- tions and the shunting schedule. Therefore, the integration of these decision making is justi ed and is appropriate to introduce robustness in the model. We propose a new approach to obtain better circula- tions of the rolling stock material, solving … Read more