Achieving Higher Frequencies in Large-Scale Nonlinear Model Predictive Control

We present new insights into how to achieve higher frequencies in large-scale nonlinear predictive control using truncated-like schemes. The basic idea is that, instead of solving the full nonlinear programming (NLP) problem at each sampling time, we solve a single, truncated quadratic programming (QP) problem. We present conditions guaranteeing stability of the approximation error derived … Read more

Lipschitz solutions of optimal control problems with state constraints of arbitrary order

In this paper we generalize to an arbitrary order, under minimal hypotheses, some sufficient conditions for Lipschitz continuity of the solution of a state constrained optimal control problems. The proof combines the approach by Hager in 1979 for dealing with first-order state constraints, and the high-order alternative formulation of the optimality conditions. CitationPublished as INRIA … Read more

PROACTIVE ENERGY MANAGEMENT FOR NEXT-GENERATION BUILDING SYSTEMS

We present a proactive energy management framework that integrates predictive dynamic building models and day-ahead forecasts of disturbances affecting efficiency and costs. This enables an efficient management of resources and an accurate prediction of the daily electricity demand profile. The strategy is based on the on-line solution of mixed-integer nonlinear programming problems. The framework is … Read more

A Computational Framework for Uncertainty Quantification and Stochastic Optimization in Unit Commitment with Wind Power Generation

We present a computational framework for integrating a state-of-the-art numerical weather prediction (NWP) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the NWP model with an ensemble-based uncertainty quantification strategy implemented in a distributed-memory parallel computing architecture. We discuss computational issues arising in the implementation of the … Read more

Convergence and Convergence Rate of Stochastic Gradient Search in the Case of Multiple and Non-Isolated Extrema

The asymptotic behavior of stochastic gradient algorithms is studied. Relying on some results of differential geometry (Lojasiewicz gradient inequality), the almost sure point-convergence is demonstrated and relatively tight almost sure bounds on the convergence rate are derived. In sharp contrast to all existing result of this kind, the asymptotic results obtained here do not require … Read more

Real-Time Optimization as a Generalized Equation

We establish results for the problem of tracking a time-dependent manifold arising in online nonlinear programming by casting this as a generalized equation. We demonstrate that if points along a solution manifold are consistently strongly regular, it is possible to track the manifold approximately by solving a linear complementarity problem (LCP) at each time step. … Read more

Rank-Sparsity Incoherence for Matrix Decomposition

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Such a problem arises in a number of applications in model and system identification, and is NP-hard in general. In this … Read more

Convergence Rate of Stochastic Gradient Search in the Case of Multiple and Non-Isolated Minima

The convergence rate of stochastic gradient search is analyzed in this paper. Using arguments based on differential geometry and Lojasiewicz inequalities, tight bounds on the convergence rate of general stochastic gradient algorithms are derived. As opposed to the existing results, the results presented in this paper allow the objective function to have multiple, non-isolated minima, … Read more

Optimal Security Response to Attacks on Open Science Grids

Cybersecurity is a growing concern, especially in open grids, where attack propagation is easy because of prevalent collaborations among thousands of users and hundreds of institutions. The collaboration rules that typically govern large science experiments as well as social networks of scientists span across the institutional security boundaries. A common concern is that the increased … Read more

On-Line Economic Optimization of Energy Systems Using Weather Forecast Information

We establish an on-line optimization framework to exploit weather forecast information in the operation of energy systems. We argue that anticipating the weather conditions can lead to more proactive and cost-effective operations. The framework is based on the solution of a stochastic dynamic real-time optimization (D-RTO) problem incorporating forecasts generated from a state-of-the-art weather prediction … Read more