Real-Time Optimization as a Generalized Equation

We establish results for the problem of tracking a time-dependent manifold arising in online nonlinear programming by casting this as a generalized equation. We demonstrate that if points along a solution manifold are consistently strongly regular, it is possible to track the manifold approximately by solving a linear complementarity problem (LCP) at each time step. … Read more

Rank-Sparsity Incoherence for Matrix Decomposition

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Such a problem arises in a number of applications in model and system identification, and is NP-hard in general. In this … Read more

Convergence Rate of Stochastic Gradient Search in the Case of Multiple and Non-Isolated Minima

The convergence rate of stochastic gradient search is analyzed in this paper. Using arguments based on differential geometry and Lojasiewicz inequalities, tight bounds on the convergence rate of general stochastic gradient algorithms are derived. As opposed to the existing results, the results presented in this paper allow the objective function to have multiple, non-isolated minima, … Read more

Optimal Security Response to Attacks on Open Science Grids

Cybersecurity is a growing concern, especially in open grids, where attack propagation is easy because of prevalent collaborations among thousands of users and hundreds of institutions. The collaboration rules that typically govern large science experiments as well as social networks of scientists span across the institutional security boundaries. A common concern is that the increased … Read more

On-Line Economic Optimization of Energy Systems Using Weather Forecast Information

We establish an on-line optimization framework to exploit weather forecast information in the operation of energy systems. We argue that anticipating the weather conditions can lead to more proactive and cost-effective operations. The framework is based on the solution of a stochastic dynamic real-time optimization (D-RTO) problem incorporating forecasts generated from a state-of-the-art weather prediction … Read more

The Advanced Step NMPC Controller: Optimality, Stability and Robustness

Widespread application of dynamic optimization with fast optimization solvers leads to increased consideration of first-principles models for nonlinear model predictive control (NMPC). However, significant barriers to this optimization-based control strategy are feedback delays and consequent loss of performance and stability due to on-line computation. To overcome these barriers, recently proposed NMPC controllers based on nonlinear … Read more

A Fast Moving Horizon Estimation Algorithm Based on Nonlinear Programming Sensitivity

Moving Horizon Estimation (MHE) is an efficient optimization-based strategy for state estimation. Despite the attractiveness of this method, its application in industrial settings has been rather limited. This has been mainly due to the difficulty to solve, in real-time, the associated dynamic optimization problems. In this work, a fast MHE algorithm able to overcome this … Read more

On the Optimal On-Line Management of Photovoltaic-Hydrogen Hybrid Energy Systems

We present an on-line management strategy for photovoltaic-hydrogen (PV-H2) hybrid energy systems. The strategy follows a receding-horizon principle and exploits solar radiation forecasts and statistics generated through a Gaussian process model. We demonstrate that incorporating forecast information can dramatically improve the reliability and economic performance of these promising energy production devices. Article Download View On … Read more

Lipschitz behavior of the robust regularization

To minimize or upper-bound the value of a function “robustly”, we might instead minimize or upper-bound the “epsilon-robust regularization”, defined as the map from a point to the maximum value of the function within an epsilon-radius. This regularization may be easy to compute: convex quadratics lead to semidefinite-representable regularizations, for example, and the spectral radius … Read more

Impulsive Optimal Control of Hybrid Finite-Dimensional Lagrangian Systems

The scope of this dissertation addresses numerical and theoretical issues in the impulsive control of hybrid finite-dimensional Lagrangian systems. In order to treat these aspects, a modeling framework is presented based on the measure-differential inclusion representation of the Lagrangian dynamics. The main advantage of this representation is that it enables the incorporation of set-valued force … Read more