Neur2SP: Neural Two-stage Stochastic Programming

Stochastic programming is a powerful modeling framework for decision-making under uncertainty. In this work, we tackle two-stage stochastic programs (2SPs), the most widely applied and studied class of stochastic programming models. Solving 2SPs exactly requires evaluation of an expected value function that is computationally intractable. Additionally, having a mixed-integer linear program (MIP) or a nonlinear … Read more

Accuracy and fairness trade-offs in machine learning: A stochastic multi-objective approach

In the application of machine learning to real life decision-making systems, e.g., credit scoring and criminal justice, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness. The commonly used strategy in fair machine learning is to include fairness as a constraint or a penalization term in the minimization of the prediction … Read more

On the Cluster-aware Supervised Learning (CluSL): Frameworks, Convergent Algorithms, and Applications

This paper proposes a cluster-aware supervised learning (CluSL) framework, which integrates the clustering analysis with supervised learning (SL). The objective of CluSL is to simultaneously find the best clusters of the data points and minimize the sum of loss functions within each cluster. This framework has many potential applications in healthcare, operations management, manufacturing, and … Read more

Regularization via Mass Transportation

The goal of regression and classification methods in supervised learning is to minimize the empirical risk, that is, the expectation of some loss function quantifying the prediction error under the empirical distribution. When facing scarce training data, overfitting is typically mitigated by adding regularization terms to the objective that penalize hypothesis complexity. In this paper … Read more

Convergence Rate of Stochastic Gradient Search in the Case of Multiple and Non-Isolated Minima

The convergence rate of stochastic gradient search is analyzed in this paper. Using arguments based on differential geometry and Lojasiewicz inequalities, tight bounds on the convergence rate of general stochastic gradient algorithms are derived. As opposed to the existing results, the results presented in this paper allow the objective function to have multiple, non-isolated minima, … Read more

The Application of an Oblique-Projected Landweber Method to a Model of Supervised Learning

This paper brings together a novel information representation model for use in signal processing and computer vision problems, with a particular algorithmic development of the Landweber iterative algorithm. The information representation model allows a representation of multiple values for a variable as well as expression of confidence. Both properties are important for effective computation using … Read more