An iterative approach for cone complementarity problems for nonsmooth multibody dynamics

Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is … Read more

Optimization of forming load and variables in deep drawing process for automotive cup using Genetic Algorithm

Sheet metal forming is a significant manufacturing process for producing a large variety of automotive parts and aerospace parts as well as consumer products. Deep drawing is a compression-tension forming process involving wide spectrum of operations and flow conditions. The result of the process depends on the large number of parameters and their interdependence. With … Read more

CONVERGENCE OF A CLASS OF SEMI-IMPLICIT TIME-STEPPING SCHEMES FOR NONSMOOTH RIGID MULTIBODY DYNAMICS

In this work we present a framework for the convergence analysis in a measure differential inclusion sense of a class of time-stepping schemes for multibody dynamics with contacts, joints, and friction. This class of methods solves one linear complementarity problem per step and contains the semi-implicit Euler method, as well as trapezoidallike methods for which … Read more

SPECTRAL STOCHASTIC FINITE-ELEMENT METHODS FOR PARAMETRIC CONSTRAINED OPTIMIZATION PROBLEMS

We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral stochastic finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem … Read more

Computational experience with an interior point algorithm for large scale contact problems

In this paper we present an interior point method for large scale Signorini elastic contact problems. We study the case of an elastic body in frictionless contact with a rigid foundation. Primal and primal-dual algorithms are developed to solve the quadratic optimization problem arising in the variational formulation. Our computational study confirms the efficiency of … Read more

GLOBAL CONVERGENCE OF AN ELASTIC MODE APPROACH FOR A CLASS OF MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

We prove that any accumulation point of an elastic mode approach, applied to the optimization of a mixed P variational inequality, that approximately solves the relaxed subproblems is a C-stationary point of the problem of optimizing a parametric mixed P variational inequality. If, in addition, the accumulation point satis es the MPCC-LICQ constraint quali cation and if … Read more

OPTIMIZATION-BASED SIMULATION OF NONSMOOTH RIGID MULTIBODY DYNAMICS

We present a time-stepping method to simulate rigid multibody dynamics with inelastic collision, contact, and friction. The method progresses with fixed time step without backtracking for collision and solves at every step a strictly convex quadratic program. We prove that a solution sequence of the method converges to the solution of a measure differential inclusion. … Read more

Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem

A new formulation is presented for the three-dimensional incremental quasi-static problems with unilateral frictional contact. Under the assumptions of small rotations and small strains, a Second-Order Cone Linear omplementarity Problem (SOCLCP) is formulated, which consists of complementarity conditions defined by the bilinear functions and the second-order cone constraints. The equilibrium configurations are obtained by using … Read more

Solving nonconvex SDP problems of structural optimization with stability control

The goal of this paper is to formulate and solve structural optimization problems with constraints on the global stability of the structure. The stability constraint is based on the linear buckling phenomenon. We formulate the problem as a nonconvex semidefinite programming problem and introduce an algorithm based on the Augmented Lagrangian method combined with the … Read more

On the modeling and control of delamination processes

This paper is motivated by problem of optimal shape design of laminated elastic bodies. We use a recently introduced model of delamination, based on minimization of potential energy which includes the free (Gibbs-type) energy and (pseudo)potential of dissipative forces, to introduce and analyze a special mathematical program with equilibrium constraints. The equilibrium is governed by … Read more