Recursive Trust-Region Methods for Multilevel Nonlinear Optimization (Part I): Global Convergence and Complexity

A class of trust-region methods is presented for solving unconstrained nonlinear and possibly nonconvex discretized optimization problems, like those arising in systems governed by partial differential equations. The algorithms in this class make use of the discretization level as a mean of speeding up the computation of the step. This use is recursive, leading to … Read more

Quasi-Newton methods for large-scale distributed parameter estimation

We develop Quasi-Newton methods for distributed parameter estimation problems, where the forward problem is governed by a set of partial differential equations. A Tikhonov style regularization approach yields an optimization problem with a special structure, where the gradients are calculated using the adjoint method. In many cases standard Quasi-Newton methods (such as L-BFGS) are not … Read more

Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations

We present a multigrid approach to the optimization of systems governed by differential equations. Such optimization problems have many applications, and are a broader class of problems than systems of equations. Using several model problems we give evidence (both theoretical and numerical) that a multigrid approach can often be successful in the setting of optimization. … Read more

Sufficient Optimality in a Parabolic Control Problem

We define a class of parabolic problems with control and state constraints and identify a problem within this class which possesses a locally unique critical point satisfying the second order sufficient optimality conditions. In this solution inequality constraints on the control are strongly active. The second derivative of the Lagrangian is not globally coercive. This … Read more

Optimal Control of Distributed Proceses using Reduced Order Models

The open loop optimal control (dynamic optimization) of distributed parameter systems is considered here. These problems are usually solved by the Control Vector Parameterization (CVP) approach, which transforms the original dynamic optimization method into an outer nonlinear programming problem, which requires the solution of an inner initial value problem (IVP). The solution of this IVP … Read more

iNEOS : An Interactive Environment for Nonlinear Optimization

In this paper we describe iNEOS, an Internet-based environment which facilitates the solution of complex nonlinear optimization problems. It enables a user to easily invoke a remote optimization code without having to supply the model to be optimized. An interactive communication between client and server is established and maintainted using CORBA. We test the system … Read more