Real-Time Optimization as a Generalized Equation

We establish results for the problem of tracking a time-dependent manifold arising in online nonlinear programming by casting this as a generalized equation. We demonstrate that if points along a solution manifold are consistently strongly regular, it is possible to track the manifold approximately by solving a linear complementarity problem (LCP) at each time step. … Read more

Rank-Sparsity Incoherence for Matrix Decomposition

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Such a problem arises in a number of applications in model and system identification, and is NP-hard in general. In this … Read more

Control problems with mixed constraints and application to an optimal investment problem

We discuss two optimal control problems of parabolic equations, with mixed state and control constraints, for which the standard qualification condition does not hold. Our first example is a bottleneck problem, and the second one is an optimal investment problem where a utility type function is to be minimized. By an adapted penalization technique, we … Read more

Solving large p-median problems using a Lagrangean heuristic

The p-median problem consists in locating p medians in a given graph, such that the total cost of assigning each demand to the closest median is minimized. In this work, a Lagrangean heuristic is proposed and it uses two dual information to build primal solutions. It outperforms a classic heuristic based on the same Lagrangean … Read more

Covariance regularization in inverse space

This paper proposes to apply Gaussian graphical models to estimate the large-scale normal distribution in the context of data assimilation from a relatively small number of data from the satellite. Data assimilation is a field which fits simulation models to observation data developed mainly in meteorology and oceanography. The optimization problem tends to be huge … Read more

Analysis and Generalizations of the Linearized Bregman Method

This paper reviews the Bregman methods, analyzes the linearized Bregman method, and proposes fast generalization of the latter for solving the basis pursuit and related problems. The analysis shows that the linearized Bregman method has the exact penalty property, namely, it converges to an exact solution of the basis pursuit problem if and only if … Read more

Fast Generation of Potentials for Self-Assembly of Particles

We address the inverse problem of designing isotropic pairwise particle interaction potentials that lead to the formation of a desired lattice when a system of particles is cooled. The design problem is motivated by the desire to produce materials with pre-specified structure and properties. We present a heuristic computation-free geometric method, as well as a … Read more

A Numerical Algorithm for Block-Diagonal Decomposition of Matrix *-Algebras, Part II: General Algorithm

An algorithm is proposed for finding the finest simultaneous block-diagonalization of a finite number of square matrices, or equivalently the irreducible decomposition of a matrix *-algebra given in terms of its generators. This extends the approach initiated in Part I by Murota-Kanno-Kojima-Kojima. The algorithm, composed of numerical-linear algebraic computations, does not require any algebraic structure … Read more

The L1-Norm Best-Fit Hyperplane Problem

We formalize an algorithm for solving the L1-norm best-fit hyperplane problem derived using first principles and geometric insights about L1 projection and L1 regression. The procedure follows from a new proof of global optimality and relies on the solution of a small number of linear programs. The procedure is implemented for validation and testing. This … Read more

Convergence Rate of Stochastic Gradient Search in the Case of Multiple and Non-Isolated Minima

The convergence rate of stochastic gradient search is analyzed in this paper. Using arguments based on differential geometry and Lojasiewicz inequalities, tight bounds on the convergence rate of general stochastic gradient algorithms are derived. As opposed to the existing results, the results presented in this paper allow the objective function to have multiple, non-isolated minima, … Read more