Constrained linear system with disturbance: stability under disturbance feedback

This paper proposes a control parametrization under Model Predictive Controller (MPC) framework for constrained linear discrete time systems with bounded additive disturbances. The proposed approach has the same feasible domain as that obtained from parametrization over the family of time-varying state feedback policies. In addition, the closed-loop system is stable in the sense that the … Read more

A New Cone Programming Approach for Robust Portfolio Selection

The robust portfolio selection problems have recently been studied by several researchers (e.g., see \cite{GoIy03,ErGoIy04,HaTu04,TuKo04}). In their work, the “separable” uncertainty sets of the problem parameters (e.g., mean and covariance of the random returns) were considered. These uncertainty sets share two common drawbacks: i) the actual confidence level of the uncertainty set is unknown, and … Read more

CONVERGENCE OF A CLASS OF SEMI-IMPLICIT TIME-STEPPING SCHEMES FOR NONSMOOTH RIGID MULTIBODY DYNAMICS

In this work we present a framework for the convergence analysis in a measure differential inclusion sense of a class of time-stepping schemes for multibody dynamics with contacts, joints, and friction. This class of methods solves one linear complementarity problem per step and contains the semi-implicit Euler method, as well as trapezoidallike methods for which … Read more

SPECTRAL STOCHASTIC FINITE-ELEMENT METHODS FOR PARAMETRIC CONSTRAINED OPTIMIZATION PROBLEMS

We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral stochastic finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem … Read more

Consistency of robust portfolio estimators

It is a matter of common knowledge that traditional Markowitz optimization based on sample means and covariances performs poorly in practice. For this reason, diverse attempts were made to improve performance of portfolio optimization. In this paper, we investigate three popular portfolio selection models built upon classical mean-variance theory. The first model is an extension … Read more

Computing nonnegative tensor factorizations

Nonnegative tensor factorization (NTF) is a technique for computing a parts-based representation of high-dimensional data. NTF excels at exposing latent structures in datasets, and at finding good low-rank approximations to the data. We describe an approach for computing the NTF of a dataset that relies only on iterative linear-algebra techniques and that is comparable in … Read more

A continuous GRASP to determine the relationship between drugs and adverse reactions

Adverse drug reactions (ADRs) are estimated to be one of the leading causes of death. Many national and international agencies have set up databases of ADR reports for the express purpose of determining the relationship between drugs and adverse reactions that they cause. We formulate the drug-reaction relationship problem as a continuous optimization problem and … Read more

Iterative Solution Methods for Beam Angle and Fluence Map Optimization in Intensity Modulated Radiation Therapy Planning

We present computational approaches for optimizing beam angles and fluence maps in Intensity Modulated Radiation Therapy (IMRT) planning. We assume that the number of angles to be used for the treatment is given by the treatment planner. A mixed integer programming (MIP) model and a linear programming (LP) model are used to find an optimal … Read more

A Penalized Trimmed Squares Method for Deleting Outliers in Robust Regression

We consider the problem of identifying multiple outliers in linear regression models. In robust regression the unusual observations should be removed from the sample in order to obtain better fitting for the rest of the observations. Based on the LTS estimate, we propose a penalized trimmed square estimator PTS, where penalty costs for discarding outliers … Read more

An Adaptive Primal-Dual Warm-Start Technique for Quadratic Multiobjective Optimization

We present a new primal-dual algorithm for convex quadratic multicriteria optimization. The algorithm is able to adaptively refine the approximation to the set of efficient points by way of a warm-start interior-point scalarization approach. Results of this algorithm when applied on a three-criteria real-world power plant optimization problem are reported, thereby illustrating the feasibility of … Read more