Efficient Formulations for the Multi-Floor Facility Layout Problem with Elevators

The block layout problem for a multi-floor facility is an important sub class of the facility layout problem with practical applications when the price of land is high or when a compact building allows for more efficient environmental control. Several alternative formulations for the block layout problem of a multi-floor facility are presented, where the … Read more

Data Assimilation in Weather Forecasting: A Case Study in PDE-Constrained Optimization

Variational data assimilation is used at major weather prediction centers to produce the initial conditions for 7- to 10-day weather forecasts. This technique requires the solution of a very large data-fitting problem in which the major element is a set of partial differential equations that models the evolution of the atmosphere over a time window … Read more

Measures with zeros in the inverse of their moment matrix

We investigate and discuss when the inverse of a multivariate truncated moment matrix of a measure has zeros in some prescribed entries. We describe precisely which pattern of these zeroes corresponds to independence, namely, the measure having a product structure. A more refined finding is that the key factor forcing a zero entry in this … Read more

On diagonally-relaxed orthogonal projection methods

We propose and study a block-iterative projections method for solving linear equations and/or inequalities. The method allows diagonal component-wise relaxation in conjunction with orthogonal projections onto the individual hyperplanes of the system, and is thus called diagonally-relaxed orthogonal projections (DROP). Diagonal relaxation has proven useful in accelerating the initial convergence of simultaneous and block-iterative projection … Read more

A First-Order Framework for Inverse Imaging Problems

We argue that some inverse problems arising in imaging can be efficiently treated using only single-precision (or other reduced-precision) arithmetic, using a combination of old ideas (first-order methods, polynomial preconditioners), and new ones (bilateral filtering, total variation). Using single precision, and having structures which parallelize in the ways needed to take advantage of low-cost/high-performance multi-core/SIMD … Read more

A VARIATIONAL FORMULATION FOR FRAME-BASED INVERSE PROBLEMS

A convex variational framework is proposed for solving inverse problems in Hilbert spaces with a priori information on the representation of the target solution in a frame. The objective function to be minimized consists of a separable term penalizing each frame coefficient individually and of a smooth term modeling the data formation model as well … Read more

Constrained linear system with disturbance: stability under disturbance feedback

This paper proposes a control parametrization under Model Predictive Controller (MPC) framework for constrained linear discrete time systems with bounded additive disturbances. The proposed approach has the same feasible domain as that obtained from parametrization over the family of time-varying state feedback policies. In addition, the closed-loop system is stable in the sense that the … Read more

A New Cone Programming Approach for Robust Portfolio Selection

The robust portfolio selection problems have recently been studied by several researchers (e.g., see \cite{GoIy03,ErGoIy04,HaTu04,TuKo04}). In their work, the “separable” uncertainty sets of the problem parameters (e.g., mean and covariance of the random returns) were considered. These uncertainty sets share two common drawbacks: i) the actual confidence level of the uncertainty set is unknown, and … Read more

SPECTRAL STOCHASTIC FINITE-ELEMENT METHODS FOR PARAMETRIC CONSTRAINED OPTIMIZATION PROBLEMS

We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral stochastic finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem … Read more

CONVERGENCE OF A CLASS OF SEMI-IMPLICIT TIME-STEPPING SCHEMES FOR NONSMOOTH RIGID MULTIBODY DYNAMICS

In this work we present a framework for the convergence analysis in a measure differential inclusion sense of a class of time-stepping schemes for multibody dynamics with contacts, joints, and friction. This class of methods solves one linear complementarity problem per step and contains the semi-implicit Euler method, as well as trapezoidallike methods for which … Read more