Fast Generation of Potentials for Self-Assembly of Particles

We address the inverse problem of designing isotropic pairwise particle interaction potentials that lead to the formation of a desired lattice when a system of particles is cooled. The design problem is motivated by the desire to produce materials with pre-specified structure and properties. We present a heuristic computation-free geometric method, as well as a … Read more

A Numerical Algorithm for Block-Diagonal Decomposition of Matrix *-Algebras, Part II: General Algorithm

An algorithm is proposed for finding the finest simultaneous block-diagonalization of a finite number of square matrices, or equivalently the irreducible decomposition of a matrix *-algebra given in terms of its generators. This extends the approach initiated in Part I by Murota-Kanno-Kojima-Kojima. The algorithm, composed of numerical-linear algebraic computations, does not require any algebraic structure … Read more

The L1-Norm Best-Fit Hyperplane Problem

We formalize an algorithm for solving the L1-norm best-fit hyperplane problem derived using first principles and geometric insights about L1 projection and L1 regression. The procedure follows from a new proof of global optimality and relies on the solution of a small number of linear programs. The procedure is implemented for validation and testing. This … Read more

Convergence Rate of Stochastic Gradient Search in the Case of Multiple and Non-Isolated Minima

The convergence rate of stochastic gradient search is analyzed in this paper. Using arguments based on differential geometry and Lojasiewicz inequalities, tight bounds on the convergence rate of general stochastic gradient algorithms are derived. As opposed to the existing results, the results presented in this paper allow the objective function to have multiple, non-isolated minima, … Read more

NESTA: A Fast and Accurate First-order Method for Sparse Recovery

Accurate signal recovery or image reconstruction from indirect and possibly under- sampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel fi rst-order methods in convex optimization, most notably Nesterov’s smoothing technique, this paper … Read more

Compressed Sensing with Quantized Measurements

We consider the problem of estimating a sparse signal from a set of quantized, Gaussian noise corrupted measurements, where each measurement corresponds to an interval of values. We give two methods for (approximately) solving this problem, each based on minimizing a differentiable convex function plus an l1 regularization term. Using a first order method developed … Read more

An Improved Algorithm for the Solution of the Entire Regulation Path of Support Vector Machine

This paper describes an improved algorithm for the numerical solution to the Support Vector Machine (SVM) classification problem for all values of the regularization parameter, C. The algorithm is motivated by the work of Hastie \emph{et. al.} and follows the main idea of tracking the optimality conditions of the SVM solution for descending value of … Read more

Verifiable conditions of $\ell_1hBcrecovery for sparse signals with sign restrictions

We propose necessary and sufficient conditions for a sensing matrix to be “$s$-semigood” — to allow for exact $\ell_1$-recovery of sparse signals with at most $s$ nonzero entries under sign restrictions on part of the entries. We express error bounds for imperfect $\ell_1$-recovery in terms of the characteristics underlying these conditions. These characteristics, although difficult … Read more

Optimal Security Response to Attacks on Open Science Grids

Cybersecurity is a growing concern, especially in open grids, where attack propagation is easy because of prevalent collaborations among thousands of users and hundreds of institutions. The collaboration rules that typically govern large science experiments as well as social networks of scientists span across the institutional security boundaries. A common concern is that the increased … Read more

An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems

The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. … Read more