Condition Number Analysis of Logistic Regression, and its Implications for Standard First-Order Solution Methods

Logistic regression is one of the most popular methods in binary classification, wherein estimation of model parameters is carried out by solving the maximum likelihood (ML) optimization problem, and the ML estimator is defined to be the optimal solution of this problem. It is well known that the ML estimator exists when the data is … Read more

Learning a Mixture of Gaussians via Mixed Integer Optimization

We consider the problem of estimating the parameters of a multivariate Gaussian mixture model (GMM) given access to $n$ samples $\x_1,\x_2,\ldots ,\x_n \in\mathbb{R}^d$ that are believed to have come from a mixture of multiple subpopulations. State-of-the-art algorithms used to recover these parameters use heuristics to either maximize the log-likelihood of the sample or try to … Read more

Empirical Bounds on Linear Regions of Deep Rectifier Networks

One form of characterizing the expressiveness of a piecewise linear neural network is by the number of linear regions, or pieces, of the function modeled. We have observed substantial progress in this topic through lower and upper bounds on the maximum number of linear regions and a counting procedure. However, these bounds only account for … Read more

Wasserstein Distributionally Robust Kalman Filtering

We study a distributionally robust mean square error estimation problem over a nonconvex Wasserstein ambiguity set containing only normal distributions. We show that the optimal estimator and the least favorable distribution form a Nash equilibrium. Despite the non-convex nature of the ambiguity set, we prove that the estimation problem is equivalent to a tractable convex … Read more

A mixed-integer fractional optimization approach to best subset selection

We consider the best subset selection problem in linear regression, i.e., finding a parsimonious subset of the regression variables that provides the best fit to the data according to some predefined criterion. We show that, for a broad range of criteria used in the statistics literature, the best subset selection problem can be modeled as … Read more

Predicting the vibroacoustic quality of steering gears

In the daily operations of ThyssenKrupp Presta AG, ball nut assemblies (BNA) undergo a vibroacoustical quality test and are binary classified based on their order spectra. In this work we formulate a multiple change point problem and derive optimal quality intervals and thresholds for the order spectra that minimize the number of incorrectly classified BNA. … Read more

Efficient Solution of Maximum-Entropy Sampling Problems

We consider a new approach for the maximum-entropy sampling problem (MESP) that is based on bounds obtained by maximizing a function of the form ldet M(x) over linear constraints, where M(x)is linear in the n-vector x. These bounds can be computed very efficiently and are superior to all previously known bounds for MESP on most … Read more

Correlation analysis between the vibroacoustic behavior of steering gear and ball nut assemblies in the automotive industry

The increase in quality standards in the automotive industry requires specifications to be propagated across the supply chain, a challenge exacerbated in domains where the quality is subjective. In the daily operations of ThyssenKrupp Presta AG, requirements imposed on the vibroacoustic quality of steering gear need to be passed down to their subcomponents. We quantify … Read more

An algorithm for computing Frechet means on the sphere

For most optimisation methods an essential assumption is the vector space structure of the feasible set. This condition is not fulfilled if we consider optimisation problems over the sphere. We present an algorithm for solving a special global problem over the sphere, namely the determination of Frechet means, which are points minimising the mean distance … Read more

Bounding and Counting Linear Regions of Deep Neural Networks

We investigate the complexity of deep neural networks (DNN) that represent piecewise linear (PWL) functions. In particular, we study the number of linear regions, i.e. pieces, that a PWL function represented by a DNN can attain, both theoretically and empirically. We present (i) tighter upper and lower bounds for the maximum number of linear regions … Read more