A mixed-integer fractional optimization approach to best subset selection

We consider the best subset selection problem in linear regression, i.e., finding a parsimonious subset of the regression variables that provides the best fit to the data according to some predefined criterion. We show that, for a broad range of criteria used in the statistics literature, the best subset selection problem can be modeled as … Read more

Predicting the vibroacoustic quality of steering gears

In the daily operations of ThyssenKrupp Presta AG, ball nut assemblies (BNA) undergo a vibroacoustical quality test and are binary classified based on their order spectra. In this work we formulate a multiple change point problem and derive optimal quality intervals and thresholds for the order spectra that minimize the number of incorrectly classified BNA. … Read more

Efficient Solution of Maximum-Entropy Sampling Problems

We consider a new approach for the maximum-entropy sampling problem (MESP) that is based on bounds obtained by maximizing a function of the form ldet M(x) over linear constraints, where M(x)is linear in the n-vector x. These bounds can be computed very efficiently and are superior to all previously known bounds for MESP on most … Read more

Correlation analysis between the vibroacoustic behavior of steering gear and ball nut assemblies in the automotive industry

The increase in quality standards in the automotive industry requires specifications to be propagated across the supply chain, a challenge exacerbated in domains where the quality is subjective. In the daily operations of ThyssenKrupp Presta AG, requirements imposed on the vibroacoustic quality of steering gear need to be passed down to their subcomponents. We quantify … Read more

An algorithm for computing Frechet means on the sphere

For most optimisation methods an essential assumption is the vector space structure of the feasible set. This condition is not fulfilled if we consider optimisation problems over the sphere. We present an algorithm for solving a special global problem over the sphere, namely the determination of Frechet means, which are points minimising the mean distance … Read more

Bounding and Counting Linear Regions of Deep Neural Networks

We investigate the complexity of deep neural networks (DNN) that represent piecewise linear (PWL) functions. In particular, we study the number of linear regions, i.e. pieces, that a PWL function represented by a DNN can attain, both theoretically and empirically. We present (i) tighter upper and lower bounds for the maximum number of linear regions … Read more

A Random Block-Coordinate Douglas-Rachford Splitting Method with Low Computational Complexity for Binary Logistic Regression

In this paper, we propose a new optimization algorithm for sparse logistic regression based on a stochastic version of the Douglas Rachford splitting method. Our algorithm sweeps the training set by randomly selecting a mini-batch of data at each iteration, and it allows us to update the variables in a block coordinate manner. Our approach … Read more

Smart “Predict, then Optimize”

Many real-world analytics problems involve two significant challenges: prediction and optimization. Due to the typically complex nature of each challenge, the standard paradigm is to predict, then optimize. By and large, machine learning tools are intended to minimize prediction error and do not account for how the predictions will be used in a downstream optimization … Read more

GEP-MSCRA for computing the group zero-norm regularized least squares estimator

This paper concerns with the group zero-norm regularized least squares estimator which, in terms of the variational characterization of the zero-norm, can be obtained from a mathematical program with equilibrium constraints (MPEC). By developing the global exact penalty for the MPEC, this estimator is shown to arise from an exact penalization problem that not only … Read more

Maximum-Entropy Sampling and the Boolean Quadric Polytope

We consider a bound for the maximum-entropy sampling problem (MESP) that is based on solving a max-det problem over a relaxation of the Boolean Quadric Polytope (BQP). This approach to MESP was first suggested by Christoph Helmberg over 15 years ago, but has apparently never been further elaborated or computationally investigated. We find that the … Read more