Cuts over Extended Formulations by Flow Discretization

Large-sized extended formulations have the potential for providing high-quality bounds on some combinatorial optimization problems where the natural formulations perform poorly. This chapter discusses the use of some families of cuts that have been recently applied on extended formulations that are obtained by the discretization of the continuous variables occurring in the natural formulation of … Read more

Branch and cut algorithms for detecting critical nodes in undirected graphs

In this paper we deal with the critical node problem, where a given number of nodes has to be removed from an undirected graph in order to maximize the disconnections between the node pairs of the graph. We propose an integer linear programming model with a non-polynomial number of constraints but whose linear relaxation can … Read more

On Minimizing the Energy Consumption of an Electrical Vehicle

The electrical vehicle energy management can be expressed as a Bang-Bang optimal control problem. In this work, we discuss on a new formulation and about the way to approximate this optimal control problem of Bang-Bang type via a discretization technique associated with a Branch-and-Bound algorithm. The problem that we focus on, is the minimization of … Read more

On Minimizing the Energy Consumption of an Electrical Vehicle

The electrical vehicle energy management can be expressed as a Bang-Bang optimal control problem. In this work, we discuss on a new formulation and about the way to approximate this optimal control problem of Bang-Bang type via a discretization technique associated with a Branch-and-Bound algorithm. The problem that we focus on, is the minimization of … Read more

LP and SDP Branch-and-Cut Algorithms for the Minimum Graph Bisection Problem: A Computational Comparison

While semidefinite relaxations are known to deliver good approximations for combinatorial optimization problems like graph bisection, their practical scope is mostly associated with small dense instances. For large sparse instances, cutting plane techniques are considered the method of choice. These are also applicable for semidefinite relaxations via the spectral bundle method, which allows to exploit … Read more

Dippy — a simplified interface for advanced mixed-integer programming

Mathematical modelling languages such as AMPL, GAMS, and Xpress-MP enable mathematical models such as mixed-integer linear programmes (MILPs) to be expressed clearly for solution in solvers such as CPLEX, MINOS and Gurobi. However some models are sufficiently difficult that they cannot be solved using “out-of-the-box” solvers, and customisation of the solver framework to exploit model-specific … Read more

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem with Symmetry

Given an undirected graph and a positive integer k, the maximum k-colorable subgraph problem consists of selecting a k-colorable induced subgraph of maximum cardinality. The natural integer programming formulation for this problem exhibits two kinds of symmetry: arbitrarily permuting the color classes and/or applying a non-trivial graph automorphism gives equivalent solutions. It is well known … Read more

The Time Dependent Traveling Salesman Problem: Polyhedra and Algorithm

The Time Dependent Traveling Salesman Problem (TDTSP) is a generalization of the classical Traveling Salesman Problem (TSP), where arc costs depend on their position in the tour with respect to the source node. While TSP instances with thousands of vertices can be solved routinely, there are very challenging TDTSP instances with less than 100 vertices. … Read more

Optimizing the Layout of Proportional Symbol Maps: Polyhedra and Computation

Proportional symbol maps are a cartographic tool to assist in the visualization and analysis of quantitative data associated with specific locations, such as earthquake magnitudes, oil well production, and temperature at weather stations. As the name suggests, symbol sizes are proportional to the magnitude of the physical quantities that they represent. We present two novel … Read more

New Lower Bounds for the Vehicle Routing Problem with Simultaneous Pickup and Delivery

This work deals with the Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD). We propose undirected and directed two-commodity flow formulations, which are based on the one developed by Baldacci, Hadjiconstantinou and Mingozzi for the Capacitated Vehicle Routing Problem. These new formulations are theoretically compared with the one-commodity flow formulation proposed by Dell’Amico, Righini … Read more