Convex Graph Invariants

The structural properties of graphs are usually characterized in terms of invariants, which are functions of graphs that do not depend on the labeling of the nodes. In this paper we study convex graph invariants, which are graph invariants that are convex functions of the adjacency matrix of a graph. Some examples include functions of … Read more

A Branch-and-Price Approach to the k-Clustering Minimum Biclique Completion Problem

Given a bipartite graph G = (S , T , E ), we consider the problem of finding k bipartite subgraphs, called clusters, such that each vertex i of S appears in exactly one of them, every vertex j of T appears in each cluster in which at least one of its neighbors appears, and … Read more

Coverings and Matchings in r-Partite Hypergraphs

Ryser’s conjecture postulates that, for $r$-partite hypergraphs, $\tau \leq (r-1) \nu$ where $\tau$ is the covering number of the hypergraph and $\nu$ is the matching number. Although this conjecture has been open since the 1960s, researchers have resolved it for special cases such as for intersecting hypergraphs where $r \leq 5$. In this paper, we … Read more

Approximating the Least Core Value and Least Core of Cooperative Games with Supermodular Costs

We study the approximation of the least core value and the least core of supermodular cost cooperative games. We provide a framework for approximation based on oracles that approximately determine maximally violated constraints. This framework yields a (3 + \epsilon)-approximation algorithm for computing the least core value of supermodular cost cooperative games, and a polynomial-time … Read more

Isomorphism testing for circulant graphs Cn(a,b)

In this paper we focus on connected directed/undirected circulant graphs Cn(a,b). We investigate some topological characteristics, and define a simple combinatorial model, which is new for the topic. Building on such a model, we derive a necessary and sufficient condition to test whether two circulant graphs Cn(a, b) and Cn(a’,b’) are isomorphic or not. The … Read more

Sequencing and Scheduling in Coil Coating with Shuttles

We consider a complex planning problem in integrated steel production. A sequence of coils of sheet metal needs to be color coated in consecutive stages. Di erent coil geometries and changes of coatings may necessitate time-consuming setup work. In most coating stages one can choose between two parallel color tanks in order to reduce setup times. … Read more

Complexity of the Critical Node Problem over trees

In this paper we deal with the Critical Node Problem (CNP), i.e., the problem of searching for a given number K of nodes in a graph G, whose removal minimizes the number of connections between pairs of nodes in the residual graph. While the NP-completeness of this problem for general graphs has been already established … Read more

Intractability of approximate multi-dimensional nonlinear optimization on independence systems

We consider optimization of nonlinear objective functions that balance $d$ linear criteria over $n$-element independence systems presented by linear-optimization oracles. For $d=1$, we have previously shown that an $r$-best approximate solution can be found in polynomial time. Here, using an extended Erdos-Ko-Rado theorem of Frankl, we show that for $d=2$, finding a $\rho n$-best solution … Read more

The Maximum Flow Problem with Disjunctive Constraints

We study the maximum flow problem subject to binary disjunctive constraints in a directed graph: A negative disjunctive constraint states that a certain pair of arcs in a digraph cannot be simultaneously used for sending flow in a feasible solution. In contrast to this, positive disjunctive constraints force that for certain pairs of arcs at … Read more

The minimum spanning tree problem with conflict constraints and its variations

We consider the minimum spanning tree problem with conflict constraints (MSTC). It is observed that computing an $\epsilon$-optimal solution to MSTC is NP-hard for any $\epsilon >0$. For a general conflict graph, computing even a feasible solution is NP-hard. When the underlying graph is a cactus, we show that the feasibility problem is polynomially bounded … Read more