Strong Optimal Classification Trees

Decision trees are among the most popular machine learning models and are used routinely in applications ranging from revenue management and medicine to bioinformatics. In this paper, we consider the problem of learning optimal binary classification trees with univariate splits. Literature on the topic has burgeoned in recent years, motivated both by the empirical suboptimality … Read more

Local search and swapping strategies.Challenging the greedy maximization of a polymatroid subject to a cardinality constraint

This paper studies the maximization of a polymatroid subject to a cardinality constraint. In particular, we consider the problem of improving the value of the greedy set by swapping one of its members with an element that does not belong to it. To achieve this goal, we first define a (set-based) post-greedy measure of curvature … Read more

Graph Coloring with Decision Diagrams

We introduce an iterative framework for solving graph coloring problems using decision diagrams. The decision diagram compactly represents all possible color classes, some of which may contain edge conflicts. In each iteration, we use a constrained minimum network flow model to compute a lower bound and identify conflicts. Infeasible color classes associated with these conflicts … Read more

Scheduling the Brazilian OR Conference

In this paper, we show how to efficiently schedule the Brazilian OR conference using a matheuristic approach. The event has traditionally around 300 presentations across a period of 3 to 4 days, and building a schedule for the technical sessions is an arduous task. The proposed algorithm integrates the concepts of iterated local search and … Read more

Fairness over Time in Dynamic Resource Allocation with an Application in Healthcare

Decision making problems are typically concerned with maximizing efficiency. In contrast, we address problems where there are multiple stakeholders and a centralized decision maker who is obliged to decide in a fair manner. Different decisions give different utility to each stakeholder. In cases where these decisions are made repeatedly, we provide efficient mathematical programming formulations … Read more

Worst-case analysis of clique MIPs

The usual integer programming formulation for the maximum clique problem has several undesirable properties, including a weak LP relaxation, a quadratic number of constraints and nonzeros when applied to sparse graphs, and poor guarantees on the number of branch-and-bound nodes needed to solve it. With this as motivation, we propose new mixed integer programs (MIPs) … Read more

Model-Free Assortment Pricing with Transaction Data

We study a problem in which a firm sets prices for products based on the transaction data, i.e., which product past customers chose from an assortment and what were the historical prices that they observed. Our approach does not impose a model on the distribution of the customers’ valuations and only assumes, instead, that purchase … Read more

A new branch-and-filter exact algorithm for binary constraint satisfaction problems

A binary constraint satisfaction problem (BCSP) consist in determining an assignment of values to variables which is compatible with a set of constraints. The problem is called binary because the constraints involve only pairs of variables. The BCSP is a cornerstone problem in Constraint Programming (CP), appearing in a very wide range of real-world applications. … Read more

Planar Maximum Coverage Location Problem with Partial Coverage, Continuous Spatial Demand, and Adjustable Quality of Service

We consider a generalization of the classical planar maximum coverage location problem (PMCLP) in which partial coverage is allowed, facilities have adjustable quality of service (QoS) or service range, and demand zones and service zone of each facility are represented by two-dimensional spatial objects such as rectangles, circles, polygons, etc. We denote this generalization by … Read more

The Arc-Item-Load and Related Formulations for the Cumulative Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) consists of finding the cheapest way to serve a set of customers with a fleet of vehicles of a given capacity. While serving a particular customer, each vehicle picks up its demand and carries its weight throughout the rest of its route. While costs in the classical CVRP are … Read more