Optimized Assignment Patterns in Mobile Edge Cloud Networks

Given an existing Mobile Edge Cloud (MEC) network including virtualization facilities of limited capacity, and a set of mobile Access Points (AP) whose data traffic demand changes over time, we aim at finding plans for assigning APs traffic to MEC facilities so that the demand of each AP is satisfied and MEC facility capacities are … Read more

Matroid Optimization Problems with Monotone Monomials in the Objective

In this paper we investigate non-linear matroid optimization problems with polynomial objective functions where the monomials satisfy certain monotonicity properties. Indeed, we study problems where the set of non-linear monomials consists of all non-linear monomials that can be built from a given subset of the variables. Linearizing all non-linear monomials we study the respective polytope. … Read more

Integer Optimization with Penalized Fractional Values: The Knapsack Case

We consider integer optimization problems where variables can potentially take fractional values, but this occurrence is penalized in the objective function. This general situation has relevant examples in scheduling (preemption), routing (split delivery), cutting and telecommunications, just to mention a few. However, the general case in which variables integrality can be relaxed at cost of … Read more

An improved approximation algorithm for the covering 0-1 integer program

We present an improved approximation algorithm for the covering 0-1 integer program (CIP), a well-known problem as a natural generalization of the set cover problem. Our algorithm uses a primal-dual algorithm for CIP by Fujito (2004) as a subroutine and achieves an approximation ratio of (f- (f-1)/m) when m is greater than or equal to … Read more

Finding a best approximation pair of points for two polyhedra

Given two disjoint convex polyhedra, we look for a best approximation pair relative to them, i.e., a pair of points, one in each polyhedron, attaining the minimum distance between the sets. Cheney and Goldstein showed that alternating projections onto the two sets, starting from an arbitrary point, generate a sequence whose two interlaced subsequences converge … Read more

Robust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty

In the field of robust optimization uncertain data is modeled by uncertainty sets, i.e. sets which contain all relevant outcomes of the uncertain parameters. The complexity of the related robust problem depends strongly on the shape of the uncertainty set. Two popular classes of uncertainty are budgeted uncertainty and ellipsoidal uncertainty. In this paper we … Read more

Benders decomposition of the resource constrained project scheduling problem

Problem instances found in the literature that are used in computational studies of the resource constrained project scheduling problem, typically include only a few resources. In some practical applications, however, the number of resources may be significantly higher. In this paper, problem instances with a large number of resources are considered and a Benders decomposition … Read more

The Traveling Salesperson Problem with Forbidden Neighborhoods on Regular 3D Grids

We study the traveling salesperson problem with forbidden neighborhoods (TSPFN) on regular three-dimensional grids. The TSPFN asks for a shortest tour over all grid points such that successive points along a tour have at least some given distance. We present optimal solutions and explicit construction schemes for the Euclidean TSP and the TSPFN where edges … Read more

Closed Almost Knight’s Tours on 2D and 3D Chessboards

Let a (generalized) chessboard in two or three dimensions be given. A closed knight’s tour is defined as a Hamiltonian cycle over all cells of the chessboard where all moves are knight’s moves, i.,e. have length 5^0.5. It is well-characterized for which chessboard sizes it is not possible to construct a closed knight’s tour. On … Read more

The Multiple Checkpoint Ordering Problem

The multiple Checkpoint Ordering Problem (mCOP) aims to find an optimal arrangement of n one-dimensional departments with given lengths such that the total weighted sum of their distances to m given checkpoints is minimized. In this paper we suggest an integer linear programming (ILP) approach and a dynamic programming (DP) algorithm, which is only exact … Read more