Complexity of Routing Problems with Release Dates and Deadlines

The desire of companies to offer same-day delivery leads to interesting new routing problems. We study the complexity of a setting in which a delivery to a customer is guaranteed to take place within a pre-specified time after the customer places the order. Thus, an order has a release date (when the order is placed) … Read more

On Decomposability of Multilinear Sets

In this paper, we consider the Multilinear set defined as the set of binary points satisfying a collection of multilinear equations. Such sets appear in factorable reformulations of many types of nonconvex optimization problems, including binary polynomial optimization. A great simplification in studying the facial structure of the convex hull of the Multilinear set is … Read more

Branch-and-Cut approaches for p-Cluster Editing

This paper deals with a variant of the well-known Cluster Editing Problem (CEP), more precisely, the \textit{p}-CEP, in which a given input graph should be edited by adding and/or removing edges in such a way that \textit{p} vertex-disjoint cliques (clusters) are generated with the minimum number of editions. We introduce several valid inequalities where some … Read more

Piecewise Parametric Structure in the Pooling Problem – from Sparse Strongly-Polynomial Solutions to NP-Hardness

The standard pooling problem is a NP-hard sub-class of non-convex quadratically-constrained optimization problems that commonly arises in process systems engineering applications. We take a parametric approach to uncovering topological structure and sparsity of the standard pooling problem in its p-formulation. The structure uncovered in this approach validates Professor Christodoulos A. Floudas’ intuition that pooling problems … Read more

The Traveling Salesman Problem on Grids with Forbidden Neighborhoods

We introduce the Traveling Salesman Problem with forbidden neighborhoods (TSPFN). This is an extension of the Euclidean TSP in the plane where direct connections between points that are too close are forbidden. The TSPFN is motivated by an application in laser beam melting. In the production of a workpiece in several layers using this method … Read more

Approximation Properties and Tight Bounds for Constrained Mixed-Integer Optimal Control

We extend recent work on mixed-integer nonlinear optimal control prob- lems (MIOCPs) to the case of integer control functions subject to constraints. Promi- nent examples of such systems include problems with restrictions on the number of switches permitted, or problems that minimize switch cost. We extend a theorem due to [Sager et al., Math. Prog. … Read more

Bi-objective branch–and–cut algorithms: Applications to the single source capacitated facility location problem

Most real–world optimization problems are of a multi–objective nature, involving objectives which are conflicting and incomparable. Solving a multi–objective optimization problem requires a method which can generate the set of rational compromises between the objectives. In this paper, we propose two distinct bound set based branch–and–cut algorithms for bi–objective combinatorial optimization problems, based on implicitly … Read more

A Polyhedral Approach to Online Bipartite Matching

We study the i.i.d. online bipartite matching problem, a dynamic version of the classical model where one side of the bipartition is fixed and known in advance, while nodes from the other side appear one at a time as i.i.d. realizations of a uniform distribution, and must immediately be matched or discarded. We consider various … Read more

Combinatorial Benders Cuts for Assembly Line Balancing Problems with Setups

The classical assembly line balancing problem consists of assigning assembly work to workstations. In the presence of setup times that depend on the sequence of tasks assigned to each workstation, the problem becomes more complicated given that two interdependent problems, namely assignment and sequencing, must be solved simultaneously. The hierarchical nature of these two problems … Read more

Lagrangian and Branch-and-Cut Approaches for Upgrading Spanning Tree Problems

Problems aiming at finding budget constrained optimal upgrading schemes to improve network performance have received attention over the last two decades. In their general setting, these problems consist of designing a network and, simultaneously, allocating (limited) upgrading resources in order to enhance the performance of the designed network. In this paper we address two particular … Read more