A Constructive Proof of the Existence of a Utility in Revealed Preference Theory

Within the context of the standard model of rationality within economic modelling we show the existence of a utility function that rationalises a demand correspondence, hence completely characterizes the associated preference structure, by taking a dense demand sample. This resolves the problem of revealed preferences under some very mild assumptions on the demand correspondence which … Read more

Improved approximation algorithms for the facility location problems with linear/submodular penalty

We consider the facility location problem with submodular penalty (FLPSP) and the facility location problem with linear penalty (FLPLP), two extensions of the classical facility location problem (FLP). First, we introduce a general algorithmic framework for a class of covering problems with submodular penalty, extending the recent result of Geunes et al. [12] with linear … Read more

Exact and heuristic approaches to the budget-constrained dynamic uncapacitated facility location-network design problem

Facility location-network design problems seek to simultaneously determine the locations of fa- cilities and the design of the network connecting the facilities so as to best serve a set of clients accessing the facilities via the network. Here we study a dynamic (multi-period) version of the problem, subject to a budget constraint limiting the investment … Read more

Separable Concave Optimization Approximately Equals Piecewise-Linear Optimization

We study the problem of minimizing a nonnegative separable concave function over a compact feasible set. We approximate this problem to within a factor of 1+epsilon by a piecewise-linear minimization problem over the same feasible set. Our main result is that when the feasible set is a polyhedron, the number of resulting pieces is polynomial … Read more

Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods

The single row facility layout problem (SRFLP) is the problem of arranging facilities with given lengths on a line, while minimizing the weighted sum of the distances between all pairs of facilities. The problem is NP-hard. In this paper, we present two tabu search implementations, one involving an exhaustive search of the 2-opt neighborhood and … Read more

The Gram dimension of a graph

The Gram dimension $\gd(G)$ of a graph is the smallest integer $k \ge 1$ such that, for every assignment of unit vectors to the nodes of the graph, there exists another assignment of unit vectors lying in $\oR^k$, having the same inner products on the edges of the graph. The class of graphs satisfying $\gd(G) … Read more

The Asymmetric Quadratic Traveling Salesman Problem

The quadratic traveling salesman problem asks for a tour of minimal costs where the costs are associated with each two arcs that are traversed in succession. This structure arises, e. g., if the succession of two arcs represents the costs of loading processes in transport networks or a switch between different technologies in communication networks. … Read more

A LINEAR TIME ALGORITHM FOR THE KOOPMANS-BECKMANN QAP LINEARIZATION AND RELATED PROBLEMS

An instance of the quadratic assignment problem (QAP) with cost matrix Q is said to be linearizable if there exists an instance of the linear assignment problem (LAP) with cost matrix C such that for each assignment, the QAP and LAP objective function values are identical. The QAP linearization problem can be solved in O(n4) … Read more

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of … Read more

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of … Read more