Weak and Strong Convergence of Algorithms for the Split Common Null Point Problem

We introduce and study the Split Common Null Point Problem (SCNPP) for set-valued maximal monotone mappings in Hilbert space. This problem generalizes our Split Variational Inequality Problem (SVIP) [Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numerical Algorithms, accepted for publication, DOI 10.1007/s11075-011-9490-5]. The SCNPP with only two set-valued … Read more

On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators

Recently, Nemirovski’s analysis indicates that the extragradient method has the $O(1/t)$ convergence rate for variational inequalities with Lipschitz continuous monotone operators. For the same problems, in the last decades, we have developed a class of Fej\’er monotone projection and contraction methods. Until now, only convergence results are available to these projection and contraction methods, though … Read more

Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems

In a recent paper by Monteiro and Svaiter, a hybrid proximal extragradient framework has been used to study the iteration-complexity of a first-order (or, in the context of optimization, second-order) method for solving monotone nonlinear equations. The purpose of this paper is to extend this analysis to study a prox-type first-order method for monotone smooth … Read more

The Linear Complementarity Problem, Lemke Algorithm, Perturbation, and the Complexity Class PPAD

We present a single sufficient condition for the processability of the Lemke algorithm for semimonotone Linear Complementarity problems (LCP) which unifies several sufficient conditions for a number of well known subclasses of semimonotone LCPs. In particular, we study the close relationship of these problems to the complexity class PPAD. Next, we show that these classes … Read more

Stochastic Variational Inequalities:Residual Minimization Smoothing/Sample Average approximations

The stochastic variational inequality (SVI) has been used widely, in engineering and economics, as an effective mathematical model for a number of equilibrium problems involving uncertain data. This paper presents a new expected residual minimization (ERM) formulation for a class of SVI. The objective of the ERM-formulation is Lipschitz continuous and semismooth which helps us … Read more

Variational Convergence of Bifunctions: Motivating Applications

It’s shown that a number of variational problems can be cast as finding the maxinf-points (or minsup-points) of bivariate functions, coveniently abbreviated to bifunctions. These variational problems include: linear and nonlinear complementarity problems, fixed points, variational inequalities, inclusions, non-cooperative games, Walras and Nash equilibrium problems. One can then appeal to the theory of lopsided convergence … Read more

On the Dynamic Stability of Electricity Markets

In this work, we present new insights into the dynamic stability of electricity markets. In particular, we discuss how short forecast horizons, incomplete gaming, and physical ramping constraints can give rise to stability issues. Using basic concepts of market efficiency, Lyapunov stability, and predictive control, we construct a new stabilizing market design. A numerical case … Read more

A Continuous Dynamical Newton-Like Approach to Solving Monotone Inclusions

We introduce non-autonomous continuous dynamical systems which are linked to Newton and Levenberg-Marquardt methods. They aim at solving inclusions governed by maximal monotone operators in Hilbert spaces. Relying on Minty representation of maximal monotone operators as lipschitzian manifolds, we show that these dynamics can be formulated as first-order in time differential systems, which are relevant … Read more

A Parallel Inertial Proximal Optimization Method

The Douglas-Rachford algorithm is a popular iterative method for finding a zero of a sum of two maximal monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum of an arbitrary number of … Read more

First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints

In this paper we consider a mathematical program with semidefinite cone complementarity constraints (SDCMPCC). Such a problem is a matrix analogue of the mathematical program with (vector) complementarity constraints (MPCC) and includes MPCC as a special case. We derive explicit expressions for the strong-, Mordukhovich- and Clarke- (S-, M- and C-)stationary conditions and give constraint … Read more