On Linear Bilevel Optimization Problems with Complementarity-Constrained Lower Levels

We consider a novel class of linear bilevel optimization models with a lower level that is a linear program with complementarity constraints (LPCC). We present different single-level reformulations depending on whether the linear complementarity problem (LCP) as part of the lower-level constraint set depends on the upper-level decisions or not as well as on whether … Read more

Why there is no need to use a big-M in linear bilevel optimization: A computational study of two ready-to-use approaches

Linear bilevel optimization problems have gained increasing attention both in theory as well as in practical applications of Operations Research (OR) during the last years and decades. The latter is mainly due to the ability of this class of problems to model hierarchical decision processes. However, this ability makes bilevel problems also very hard to … Read more

Affinely Adjustable Robust Linear Complementarity Problems

Linear complementarity problems are a powerful tool for modeling many practically relevant situations such as market equilibria. They also connect many sub-areas of mathematics like game theory, optimization, and matrix theory. Despite their close relation to optimization, the protection of LCPs against uncertainties – especially in the sense of robust optimization – is still in … Read more

A geodesic interior-point method for linear optimization over symmetric cones

We develop a new interior-point method (IPM) for symmetric-cone optimization, a common generalization of linear, second-order-cone, and semidefinite programming. In contrast to classical IPMs, we update iterates with a geodesic of the cone instead of the kernel of the linear constraints. This approach yields a primal-dual-symmetric, scale-invariant, and line-search-free algorithm that uses just half the … Read more

Equilibrium Oil Market Share under the COVID-19 Pandemic

Equilibrium models for energy markets under uncertain demand and supply have attracted considerable attentions. This paper focuses on modelling crude oil market share under the COVID-19 pandemic using two-stage stochastic equilibrium. We describe the uncertainties in the demand and supply by random variables and provide two types of production decisions (here-and-now and wait-and-see). The here-and-now … Read more

Tight bounds on Lyapunov rank

The Lyapunov rank of a cone is the number of independent equations obtainable from an analogue of the complementary slackness condition in cone programming problems, and more equations are generally thought to be better. Bounding the Lyapunov rank of a proper cone in R^n from above is an open problem. Gowda and Tao gave an … Read more

Complementarity Modeling of a Ramsey-Type Equilibrium Problem with Heterogeneous Agents

We contribute to the field of Ramsey-type equilibrium models with heterogeneous agents. To this end, we state such a model in a time-continuous and time-discrete form, which in the latter case leads to a finite-dimensional mixed complementarity problem. We prove the existence of solutions of the latter problem using the theory of variational inequalities and … Read more

Analysis of Energy Markets Modeled as Equilibrium Problems with Equilibrium Constraints

Equilibrium problems with equilibrium constraints are challenging both theoretically and computationally. However, they are suitable/adequate modeling formulations in a number of important areas, such as energy markets, transportation planning, and logistics. Typically, these problems are characterized as bilevel Nash-Cournot games. For instance, determin- ing the equilibrium price in an energy market involves top-level decisions of … Read more

Closing the Gap in Linear Bilevel Optimization: A New Valid Primal-Dual Inequality

Linear bilevel optimization problems are often tackled by replacing the linear lower-level problem with its Karush–Kuhn–Tucker (KKT) conditions. The resulting single-level problem can be solved in a branch-and-bound fashion by branching on the complementarity constraints of the lower-level problem’s optimality conditions. While in mixed-integer single-level optimization branch- and-cut has proven to be a powerful extension … Read more

Decomposition Algorithms for Some Deterministic and Two-Stage Stochastic Single-Leader Multi-Follower Games

We consider a certain class of hierarchical decision problems that can be viewed as single-leader multi-follower games, and be represented by a virtual market coordinator trying to set a price system for traded goods, according to some criterion that balances supply and demand. The objective function of the market coordinator involves the decisions of many … Read more