Tight global linear convergence rate bounds for operator splitting methods

In this paper we establish necessary and sufficient conditions for linear convergence of operator splitting methods for a general class of convex optimization problems where the associated fixed-point operator is averaged. We also provide a tight bound on the achievable convergence rate. Most existing results establishing linear convergence in such methods require restrictive assumptions regarding … Read more

Coordinate Friendly Structures, Algorithms and Applications

This paper focuses on coordinate update methods, which are useful for solving problems involving large or high-dimensional datasets. They decompose a problem into simple subproblems, where each updates one, or a small block of, variables while fixing others. These methods can deal with linear and nonlinear mappings, smooth and nonsmooth functions, as well as convex … Read more

Two-sided linear chance constraints and extensions

We examine the convexity and tractability of the two-sided linear chance constraint model under Gaussian uncertainty. We show that these constraints can be applied directly to model a larger class of nonlinear chance constraints as well as provide a reasonable approximation for a challenging class of quadratic chance constraints of direct interest for applications in … Read more

Level-set methods for convex optimization

Convex optimization problems arising in applications often have favorable objective functions and complicated constraints, thereby precluding first-order methods from being immediately applicable. We describe an approach that exchanges the roles of the objective and constraint functions, and instead approximately solves a sequence of parametric level-set problems. A zero-finding procedure, based on inexact function evaluations and … Read more

Iteration-complexity of a Rockafellar’s proximal method of multipliers for convex programming based on second-order approximations

This paper studies the iteration-complexity of a new primal-dual algorithm based on Rockafellar’s proximal method of multipliers (PMM) for solving smooth convex programming problems with inequality constraints. In each step, either a step of Rockafellar’s PMM for a second-order model of the problem is computed or a relaxed extragradient step is performed. The resulting algorithm … Read more

A Reduced-Space Algorithm for Minimizing $\ell_1hBcRegularized Convex Functions

We present a new method for minimizing the sum of a differentiable convex function and an $\ell_1$-norm regularizer. The main features of the new method include: $(i)$ an evolving set of indices corresponding to variables that are predicted to be nonzero at a solution (i.e., the support); $(ii)$ a reduced-space subproblem defined in terms of … Read more

An Algorithmic Framework of Generalized Primal-Dual Hybrid Gradient Methods for Saddle Point Problems

The primal-dual hybrid gradient method (PDHG) originates from the Arrow-Hurwicz method, and it has been widely used to solve saddle point problems, particularly in image processing areas. With the introduction of a combination parameter, Chambolle and Pock proposed a generalized PDHG scheme with both theoretical and numerical advantages. It has been analyzed that except for … Read more

A new algorithm for solving planar multiobjective location problems involving the Manhattan norm

This paper is devoted to the study of unconstrained planar multiobjective location problems, where distances between points are defined by means of the Manhattan norm. By identifying all nonessential objectives, we develop an effective algorithm for generating the whole set of efficient solutions. We prove the correctness of this algorithm and present some computational results, … Read more

Fast convex optimization via inertial dynamics with Hessian driven damping

We first study the fast minimization properties of the trajectories of the second-order evolution equation \begin{equation*} \ddot{x}(t) + \frac{\alpha}{t} \dot{x}(t) + \beta \nabla^2 \Phi (x(t))\dot{x} (t) + \nabla \Phi (x(t)) = 0, \end{equation*} where $\Phi : \mathcal H \to \mathbb R$ is a smooth convex function acting on a real Hilbert space $\mathcal H$, and … Read more