Atomic norm denoising with applications to line spectral estimation

The sub-Nyquist estimation of line spectra is a classical problem in signal processing, but currently popular subspace-based techniques have few guarantees in the presence of noise and rely on a priori knowledge about system model order. Motivated by recent work on atomic norms in inverse problems, we propose a new approach to line spectral estimation … Read more

A Stochastic Gradient Method with an Exponential Convergence Rate for Strongly-Convex Optimization with Finite Training Sets

We propose a new stochastic gradient method for optimizing the sum of a finite set of smooth functions, where the sum is strongly convex. While standard stochastic gradient methods converge at sublinear rates for this problem, the proposed method incorporates a memory of previous gradient values in order to achieve a linear convergence rate. Numerical … Read more

A Parallel Bundle Method for Asynchronous Subspace Optimization in Lagrangian Relaxation

An algorithmic approach is proposed for exploiting parallelization possibilities in large scale optimization models of the following generic type. Objects change their state over time subject to a limited availability of common resources. These are modeled by linear coupling constraints and result in few objects competing for the same resource at each point in time. … Read more

D-ADMM: A Communication-Efficient Distributed Algorithm For Separable Optimization

We propose a distributed algorithm, named D-ADMM, for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem, the cost function is the sum of all the agents’ private cost functions, and the constraint set is the intersection of all the agents’ private constraint sets. We require the private … Read more

Warmstarting the Homogeneous and Self-Dual Interior Point Method for Linear and Conic Quadratic Problems

We present two strategies for warmstarting primal-dual interior point methods for the homogeneous self-dual model when applied to mixed linear and quadratic conic optimization problems. Common to both strategies is their use of only the final (optimal) iterate of the initial problem and their negligible computational cost. This is a major advantage when comparing to … Read more

CONJUGATE GRADIENT WITH SUBSPACE OPTIMIZATION

In this paper we present a variant of the conjugate gradient (CG) algorithm in which we invoke a subspace minimization subproblem on each iteration. We call this algorithm CGSO for “conjugate gradient with subspace optimization”. It is related to earlier work by Nemirovsky and Yudin. We apply the algorithm to solve unconstrained strictly convex problems. … Read more

Reformulation of a model for hierarchical divisive graph modularity maximization

Finding clusters, or communities, in a graph, or network is a very important problem which arises in many domains. Several models were proposed for its solution. One of the most studied and exploited is the maximization of the so called modularity, which represents the sum over all communities of the fraction of edges within these … Read more

Stochastic first order methods in smooth convex optimization.

In this paper, we are interested in the development of efficient first-order methods for convex optimization problems in the simultaneous presence of smoothness of the objective function and stochasticity in the first-order information. First, we consider the Stochastic Primal Gradient method, which is nothing else but the Mirror Descent SA method applied to a smooth … Read more

On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers

Recently, a worst-case O(1/t) convergence rate was established for the Douglas-Rachford alternating direction method of multipliers in an ergodic sense. This note proposes a novel approach to derive the same convergence rate while in a non-ergodic sense. ArticleDownload View PDF

Algebraic Relaxations and Hardness Results in Polynomial Optimization and Lyapunov Analysis

The contributions of the first half of this thesis are on the computational and algebraic aspects of convexity in polynomial optimization. We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves … Read more