Bundle-type methods uniformly optimal for smooth and nonsmooth convex optimization

The bundle-level method and their certain variants are known to exhibit an optimal rate of convergence, i.e., ${\cal O}(1/\sqrt{t})$, and also excellent practical performance for solving general non-smooth convex programming (CP) problems. However, this rate of convergence is significantly worse than the optimal one for solving smooth CP problems, i.e., ${\cal O}(1/t^2)$. In this paper, … Read more

Symmetric tensor approximation hierarchies for the completely positive cone

In this paper we construct two approximation hierarchies for the completely positive cone based on symmetric tensors. We show that one hierarchy corresponds to dual cones of a known polyhedral approximation hierarchy for the copositive cone, and the other hierarchy corresponds to dual cones of a known semidefinite approximation hierarchy for the copositive cone. As … Read more

Convergence analysis of primal-dual algorithms for total variation image restoration

Recently, some attractive primal-dual algorithms have been proposed for solving a saddle-point problem, with particular applications in the area of total variation (TV) image restoration. This paper focuses on the convergence analysis of existing primal-dual algorithms and shows that the involved parameters of those primal-dual algorithms (including the step sizes) can be significantly enlarged if … Read more

On the acceleration of augmented Lagrangian method for linearly constrained optimization

The classical augmented Lagrangian method (ALM) plays a fundamental role in algorithmic development of constrained optimization. In this paper, we mainly show that Nesterov’s influential acceleration techniques can be applied to accelerate ALM, thus yielding an accelerated ALM whose iteration-complexity is O(1/k^2) for linearly constrained convex programming. As a by-product, we also show easily that … Read more

An accelerated inexact proximal point algorithm for convex minimization

The proximal point algorithm (PPA) is classical and popular in the community of Optimization. In practice, inexact PPAs which solves the involved proximal subproblems approximately subject to certain inexact criteria are truly implementable. In this paper, we first propose an inexact PPA with a new inexact criterion for solving convex minimization, and show that the … Read more

An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming

We present a branch-and-bound algorithm for minimizing a convex quadratic objective function over integer variables subject to convex constraints. In a given node of the enumeration tree, corresponding to the fixing of a subset of the variables, a lower bound is given by the continuous minimum of the restricted objective function. We improve this bound … Read more

Interior Point Methods for Computing Optimal Designs

In this paper we study interior point (IP) methods for solving optimal design problems. In particular, we propose a primal IP method for solving the problems with general convex optimality criteria and establish its global convergence. In addition, we reformulate the problems with A-, D- and E-criterion into linear or log-determinant semidefinite programs (SDPs) and … Read more

Information-theoretic lower bounds on the oracle complexity of convex optimization

Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Given the extensive use of convex optimization in machine learning and statistics, gaining an understanding of these complexity-theoretic issues is important. In this paper, we study the complexity of stochastic … Read more

Solving Infinite-dimensional Optimization Problems by Polynomial Approximation

We solve a class of convex infinite-dimensional optimization problems using a numerical approximation method that does not rely on discretization. Instead, we restrict the decision variable to a sequence of finite-dimensional linear subspaces of the original infinite-dimensional space and solve the corresponding finite-dimensional problems in a efficient way using structured convex optimization techniques. We prove … Read more

Double smoothing technique for infinite-dimensional optimization problems with applications to Optimal Control.

In this paper, we propose an efficient technique for solving some infinite-dimensional problems over the sets of functions of time. In our problem, besides the convex point-wise constraints on state variables, we have convex coupling constraints with finite-dimensional image. Hence, we can formulate a finite-dimensional dual problem, which can be solved by efficient gradient methods. … Read more