Nash Equilibrium in a Pay-as-bid Electricity Market: Part 2 – Best Response of a Producer

We consider a multi-leader-common-follower model of a pay-as-bid electricity market in which the producers provide the regulator with either linear or quadratic bids. We prove that for a given producer only linear bids can maximise his profit. Such linear bids are referred as the “best response” of the given producer. They are obtained assuming the … Read more

Variational Analysis of the Crouzeix Ratio

Let $W(A)$ denote the field of values (numerical range) of a matrix $A$. For any polynomial $p$ and matrix $A$, define the Crouzeix ratio to have numerator $\max\left\{|p(\zeta)|:\zeta\in W(A)\right\}$ and denominator $\|p(A)\|_2$. M.~Crouzeix’s 2004 conjecture postulates that the globally minimal value of the Crouzeix ratio is $1/2$, over all polynomials $p$ of any degree and … Read more

Approximate Versions of the Alternating Direction Method of Multipliers

We present three new approximate versions of alternating direction method of multipliers (ADMM), all of which require only knowledge of subgradients of the subproblem objectives, rather than bounds on the distance to the exact subproblem solution. One version, which applies only to certain common special cases, is based on combining the operator-splitting analysis of the … Read more

Generalized Conjugate Gradient Methods for $\ell_1$ Regularized Convex Quadratic Programming with Finite Convergence

The conjugate gradient (CG) method is an efficient iterative method for solving large-scale strongly convex quadratic programming (QP). In this paper we propose some generalized CG (GCG) methods for solving the $\ell_1$-regularized (possibly not strongly) convex QP that terminate at an optimal solution in a finite number of iterations. At each iteration, our methods first … Read more

Sparse Recovery via Partial Regularization: Models, Theory and Algorithms

In the context of sparse recovery, it is known that most of existing regularizers such as $\ell_1$ suffer from some bias incurred by some leading entries (in magnitude) of the associated vector. To neutralize this bias, we propose a class of models with partial regularizers for recovering a sparse solution of a linear system. We … Read more

First and second order optimality conditions for piecewise smooth objective functions

Any piecewise smooth function that is specified by an evaluation procedures involving smooth elemental functions and piecewise linear functions like min and max can be represented in the so-called abs-normal form. By an extension of algorithmic, or automatic differentiation, one can then compute certain first and second order derivative vectors and matrices that represent a … Read more

Manifold Sampling for L1 Nonconvex Optimization

We present a new algorithm, called manifold sampling, for the unconstrained minimization of a nonsmooth composite function $h\circ F$ when $h$ has known structure. In particular, by classifying points in the domain of the nonsmooth function $h$ into manifolds, we adapt search directions within a trust-region framework based on knowledge of manifolds intersecting the current … Read more

On Cournot-Nash-Walras equilibria and their computation

This paper considers a model of Cournot-Nash-Walras (CNW) equilibrium where the Cournot-Nash concept is used to capture equilibrium of an oligopolistic market with non-cooperative players/ rms who share a certain amount of a so-called rare resource needed for their production, and the Walras equilibrium determines the price of that rare resource. We prove the existence of … Read more

Quantitative recovery conditions for tree-based compressed sensing

As shown in [9, 1], signals whose wavelet coefficients exhibit a rooted tree structure can be recovered — using specially-adapted compressed sensing algorithms — from just $n=\mathcal{O}(k)$ measurements, where $k$ is the sparsity of the signal. Motivated by these results, we introduce a simplified proportional-dimensional asymptotic framework which enables the quantitative evaluation of recovery guarantees … Read more

New Computational Guarantees for Solving Convex Optimization Problems with First Order Methods, via a Function Growth Condition Measure

Motivated by recent work of Renegar, we present new computational methods and associated computational guarantees for solving convex optimization problems using first-order methods. Our problem of interest is the general convex optimization problem f^* = \min_{x \in Q} f(x), where we presume knowledge of a strict lower bound f_slb < f^*. [Indeed, f_slb is naturally ... Read more