From error bounds to the complexity of first-order descent methods for convex functions

This paper shows that error bounds can be used as effective tools for deriving complexity results for first-order descent methods in convex minimization. In a first stage, this objective led us to revisit the interplay between error bounds and the Kurdyka-\L ojasiewicz (KL) inequality. One can show the equivalence between the two concepts for convex … Read more

An optimal first-order primal-dual gap reduction framework for constrained convex optimization

We introduce an analysis framework for constructing optimal first-order primal-dual methods for the prototypical constrained convex optimization tem- plate. While this class of methods offers scalability advantages in obtaining nu- merical solutions, they have the disadvantage of producing sequences that are only approximately feasible to the problem constraints. As a result, it is theoretically challenging … Read more

Techniques in Iterative Proton CT Image Reconstruction

This is a review paper on some of the physics, modeling, and iterative algorithms in proton computed tomography (pCT) image reconstruction. The primary challenge in pCT image reconstruction lies in the degraded spatial resolution resulting from multiple Coulomb scattering within the imaged object. Analytical models such as the most likely path (MLP) have been proposed … Read more

A composition projection method for convex feasibility problems

In this article, we propose a composition projection algorithm for solving feasibility problem in Hilbert space. The convergence of the proposed algorithm are established by using gap vector which does not involve the nonempty intersection assumption. Moreover, we provide the sufficient and necessary condition for the convergence of the proposed method. ArticleDownload View PDF

Manifold Sampling for L1 Nonconvex Optimization

We present a new algorithm, called manifold sampling, for the unconstrained minimization of a nonsmooth composite function $h\circ F$ when $h$ has known structure. In particular, by classifying points in the domain of the nonsmooth function $h$ into manifolds, we adapt search directions within a trust-region framework based on knowledge of manifolds intersecting the current … Read more

On Cournot-Nash-Walras equilibria and their computation

This paper considers a model of Cournot-Nash-Walras (CNW) equilibrium where the Cournot-Nash concept is used to capture equilibrium of an oligopolistic market with non-cooperative players/ rms who share a certain amount of a so-called rare resource needed for their production, and the Walras equilibrium determines the price of that rare resource. We prove the existence of … Read more

Degeneracy in Maximal Clique Decomposition for Semidefinite Programs

Exploiting sparsity in Semidefinite Programs (SDP) is critical to solving large-scale problems. The chordal completion based maximal clique decomposition is the preferred approach for exploiting sparsity in SDPs. In this paper, we show that the maximal clique-based SDP decomposition is primal degenerate when the SDP has a low rank solution. We also derive conditions under … Read more

Quantitative recovery conditions for tree-based compressed sensing

As shown in [9, 1], signals whose wavelet coefficients exhibit a rooted tree structure can be recovered — using specially-adapted compressed sensing algorithms — from just $n=\mathcal{O}(k)$ measurements, where $k$ is the sparsity of the signal. Motivated by these results, we introduce a simplified proportional-dimensional asymptotic framework which enables the quantitative evaluation of recovery guarantees … Read more

An accelerated non-Euclidean hybrid proximal extragradient-type Algorithm for convex-concave saddle-point Problems

This paper describes an accelerated HPE-type method based on general Bregman distances for solving monotone saddle-point (SP) problems. The algorithm is a special instance of a non-Euclidean hybrid proximal extragradient framework introduced by Svaiter and Solodov [28] where the prox sub-inclusions are solved using an accelerated gradient method. It generalizes the accelerated HPE algorithm presented … Read more

New Computational Guarantees for Solving Convex Optimization Problems with First Order Methods, via a Function Growth Condition Measure

Motivated by recent work of Renegar, we present new computational methods and associated computational guarantees for solving convex optimization problems using first-order methods. Our problem of interest is the general convex optimization problem f^* = \min_{x \in Q} f(x), where we presume knowledge of a strict lower bound f_slb < f^*. [Indeed, f_slb is naturally ... Read more