Feasible and accurate algorithms for covering semidefinite programs

In this paper we describe an algorithm to approximately solve a class of semidefinite programs called covering semidefinite programs. This class includes many semidefinite programs that arise in the context of developing algorithms for important optimization problems such as sparsest cut, wireless multicasting, and pattern classification. We give algorithms for covering SDPs whose dependence on … Read more

Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems with Cone Constraints and Applications

In this work, a nonsmooth multiobjective optimization problem involving generalized invexity with cone constraints and Applications (for short, (MOP)) is considered. The Kuhn-Tucker necessary and sufficient conditions for (MOP) are established by using a generalized alternative theorem of Craven and Yang. The relationship between weakly efficient solutions of (MOP) and vector valued saddle points of … Read more

A splitting method for separate convex programming with linking linear constraints

We consider the separate convex programming problem with linking linear constraints, where the objective function is in the form of the sum of m individual functions without crossed variables. The special case with m=2 has been well studied in the literature and some algorithms are very influential, e.g. the alternating direction method. The research for … Read more

Alternating proximal algorithms for constrained variational inequalities. Application to domain decomposition for PDE’s

Let $\cX,\cY,\cZ$ be real Hilbert spaces, let $f : \cX \rightarrow \R\cup\{+\infty\}$, $g : \cY \rightarrow \R\cup\{+\infty\}$ be closed convex functions and let $A : \cX \rightarrow \cZ$, $B : \cY \rightarrow \cZ$ be linear continuous operators. Let us consider the constrained minimization problem $$ \min\{f(x)+g(y):\quad Ax=By\}.\leqno (\cP)$$ Given a sequence $(\gamma_n)$ which tends toward … Read more

Implicit Multifunction Theorems in complete metric spaces

In this paper, we establish some new characterizations of the metric regularity of implicit multifunctions in complete metric spaces by using the lower semicontinuous envelopes of the distance functions for set-valued mappings. Through these new characterizations it is possible to investigate implicit multifunction theorems based on coderivatives and on contingent derivatives as well as the … Read more

First order dependence on uncertainty sets in robust optimization

We show that a first order problem can approximate solutions of a robust optimization problem when the uncertainty set is scaled, and explore further properties of this first order problem. Article Download View First order dependence on uncertainty sets in robust optimization

A first-order primal-dual algorithm for convex problems with applications to imaging

In this paper we study a first-order primal-dual algorithm for convex optimization problems with known saddle-point structure. We prove convergence to a saddle-point with rate O(1/N ) in finite dimensions, which is optimal for the complete class of non-smooth problems we are considering in this paper. We further show accelerations of the proposed algorithm to … Read more

A Unified Approach for Minimizing Composite Norms

We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization problem min |sigma(F(X)-G)|_alpha + |C(X)- d|_beta subject to A(X)-b in Q; where sigma(X) denotes the vector of singular values of X, the matrix norm |sigma(X)|_alpha denotes either the Frobenius, the nuclear, or the L2-operator norm of X, the vector norm |.|_beta … Read more

Proximal alternating direction-based contraction methods for separable linearly constrained convex optimization

Alternating direction method (ADM) has been well studied in the context of linearly constrained convex programming problems. Recently, because of its significant efficiency and easy implementation in novel applications, ADM is extended to the case where the number of separable parts is a finite number. The algorithmic framework of the extended method consists of two … Read more

L1 Minimization via Randomized First Order Algorithms

In this paper we propose randomized first-order algorithms for solving bilinear saddle points problems. Our developments are motivated by the need for sublinear time algorithms to solve large-scale parametric bilinear saddle point problems where cheap online assessment of solution quality is crucial. We present the theoretical efficiency estimates of our algorithms and discuss a number … Read more