Algorithms for the quasiconvex feasibility problem

We study the behavior of subgradient projection algorithms for the quasiconvex feasibility problem of finding a point x^* in R^n that satisfies the inequalities f_i(x^*) less or equal 0, for all i=1,2,…,m, where all functions are continuous and quasiconvex. We consider the consistent case when the solution set is nonempty. Since the Fenchel-Moreau subdifferential might … Read more

A Case Study of Joint Online Truck Scheduling and Inventory Management for Multiple Warehouses

For a real world problem — transporting pallets between warehouses in order to guarantee sufficient supply for known and additional stochastic demand — we propose a solution approach via convex relaxation of an integer programming formulation, suitable for online optimization. The essential new element linking routing and inventory management is a convex piecewise linear cost … Read more

Rigorous Error Bounds for the Optimal Value in Semidefinite Programming

A wide variety of problems in global optimization, combinatorial optimization as well as systems and control theory can be solved by using linear and semidefinite programming. Sometimes, due to the use of floating point arithmetic in combination with ill-conditioning and degeneracy, erroneous results may be produced. The purpose of this article is to show how … Read more

Rebalancing an Investment Portfolio in the Presence of Convex Transaction Costs

The inclusion of transaction costs is an essential element of any realistic portfolio optimization. In this paper, we consider an extension of the standard portfolio problem in which convex transaction costs are incurred to rebalance an investment portfolio. In particular, we consider linear, piecewise linear, and quadratic transaction costs. The Markowitz framework of mean-variance efficiency … Read more

Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces

The aim of this paper is twofold. First, several basic mathematical concepts involved in the construction and study of Bregman type iterative algorithms are presented from a unified analytic perspective. Also, some gaps in the current knowledge about those concepts are filled in. Second, we employ existing results on total convexity, sequential consistency, uniform convexity … Read more

On the Minimum Volume Covering Ellipsoid of Ellipsoids

We study the problem of computing a $(1+\eps)$-approximation to the minimum volume covering ellipsoid of a given set $\cS$ of the convex hull of $m$ full-dimensional ellipsoids in $\R^n$. We extend the first-order algorithm of Kumar and \Yildirim~that computes an approximation to the minimum volume covering ellipsoid of a finite set of points in $\R^n$, … Read more

Set Intersection Theorems and Existence of Optimal Solutions

The question of nonemptiness of the intersection of a nested sequence of closed sets is fundamental in a number of important optimization topics, including the existence of optimal solutions, the validity of the minimax inequality in zero sum games, and the absence of a duality gap in constrained optimization. We introduce the new notion of … Read more

Joint minimization with alternating Bregman proximity operators

A systematic study of the proximity properties of Bregman distances is carried out. This investigation leads to the introduction of a new type of proximity operator which complements the usual Bregman proximity operator. We establish key properties of these operators and utilize them to devise a new alternating procedure for solving a broad class of … Read more

Lowner’s Operator and Spectral Functions in Euclidean Jordan Algebras

We study analyticity, differentiability, and semismoothness of Lowner’s operator and spectral functions under the framework of Euclidean Jordan algebras. In particular, we show that many optimization-related classical results in the symmetric matrix space can be generalized within this framework. For example, the metric projection operator over any symmetric cone defined in a Euclidean Jordan algebra … Read more

Perturbations and metric regularity

A point x is an approximate solution of a generalized equation [b lies in F(x)] if the distance from the point b to the set F(x) is small. Metric regularity of the set-valued mapping F means that, locally, a constant multiple of this distance bounds the distance from x to an exact solution. The smallest … Read more