A spring-embedding approach for the facility layout problem

The facility layout problem is concerned with finding the most efficient arrangement of a given number of departments with unequal area requirements within a facility. The facility layout problem is a hard problem, and therefore, exact solution methods are only feasible for small or greatly restricted problems. In this paper, we propose a spring-embedding approach … Read more

Quadratic Convergence of a Squared Smoothing Newton Method for Nonsmooth Matrix Equations and Its Applications in Semidefinite Optimization Problems

We study a smoothing Newton method for solving a nonsmooth matrix equation that includes semidefinite programming and the semidefinte complementarity problem as special cases. This method, if specialized for solving semidefinite programs, needs to solve only one linear system per iteration and achieves quadratic convergence under strict complementarity. We also establish quadratic convergence of this … Read more

A unifying framework for several cutting plane algorithms for semidefinite programming

Cutting plane methods provide the means to solve large scale semidefinite programs (SDP) cheaply and quickly. They can also conceivably be employed for the purposes of re-optimization after branching, or the addition of cutting planes. We give a survey of various cutting plane approaches for SDP in this paper. These cutting plane approaches arise from … Read more

A Conic Programming Approach to Generalized Tchebycheff Inequalities

Consider the problem of finding optimal bounds on the expected value of piece-wise polynomials over all measures with a given set of moments. We show that this problem can be studied within the framework of conic programming. Relying on a key approximation result for conic programming, we show that these bounds can be numerically computed … Read more

Using selective orthonormalization to update the analytic center after the addition of multiple cuts

We study the issue of updating the analytic center after multiple cutting planes have been added through the analytic center of the current polytope in Euclidean n-space. This is an important issue that arises at every `stage’ in a cutting plane algorithm. If q cuts are to be added, with q no larger than n, … Read more

”Cone-Free” Primal-Dual Path-Following and Potential Reduction Polynomial Time Interior-Point Methods

We present a framework for designing and analyzing primal-dual interior-point methods for convex optimization. We assume that a self-concordant barrier for the convex domain of interest and the Legendre transformation of the barrier are both available to us. We directly apply the theory and techniques of interior-point methods to the given good formulation of the … Read more

A D-Induced Duality and Its Applications

This paper attempts to extend the notion of duality for convex cones, by basing it on a pre-described conic ordering and a fixed bilinear mapping. This is an extension of the standard definition of dual cones, in the sense that the {\em nonnegativity}\/ of the inner-product is replaced by a pre-specified conic ordering, defined by … Read more

Robust regularization

Given a real function on a Euclidean space, we consider its “robust regularization”: the value of this new function at any given point is the maximum value of the original function in a fixed neighbourhood of the point in question. This construction allows us to impose constraints in an optimization problem *robustly*, safeguarding a constraint … Read more

A primal affine-scaling algorithm for constrained convex programs

The affine-scaling algorithm was initially developed for linear programming problems. Its extension to problems with a nonlinear objective performs at each iteration a scaling followed by a line search along the steepest descent direction. In this paper we prove that any accumulation point generated by this algorithm when applied to a convex function is an … Read more

The Trust Region Subproblem and Semidefinite Programming

The trust region subproblem (the minimization of a quadratic objective subject to one quadratic constraint and denoted TRS) has many applications in diverse areas, e.g. function minimization, sequential quadratic programming, regularization, ridge regression, and discrete optimization. In particular, it determines the step in trust region algorithms for function minimization. Trust region algorithms are popular for … Read more