Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems

It is well known that the eigenvalues of a real symmetric matrix are not everywhere differentiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is the difference of two convex functions. This directly implies that the eigenvalues of a symmetric matrix are semismooth everywhere. Based on a very recent … Read more

Semi-infinite linear programming approaches to semidefinite programming problems

Interior point methods, the traditional methods for the $SDP$, are fairly limited in the sizes of problems they can handle. This paper deals with an $LP$ approach to overcome some of these shortcomings. We begin with a semi-infinite linear programming formulation of the $SDP$ and discuss the issue of its discretization in some detail. We … Read more

On the Primal-Dual Geometry of Level Sets in Linear and Conic Optimization

For a conic optimization problem: minimize cx subject to Ax=b, x \in C, we present a geometric relationship between the maximum norms of the level sets of the primal and the inscribed sizes of the level sets of the dual (or the other way around). Citation MIT Operations Research Center Working Paper Article Download View … Read more

On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods

We consider the Riemannian geometry defined on a convex set by the Hessian of a self-concordant barrier function, and its associated geodesic curves. These provide guidance for the construction of efficient interior-point methods for optimizing a linear function over the intersection of the set with an affine manifold. We show that algorithms that follow the … Read more

Polynomial interior point cutting plane methods

Polynomial cutting plane methods based on the logarithmic barrier function and on the volumetric center are surveyed. These algorithms construct a linear programming relaxation of the feasible region, find an appropriate approximate center of the region, and call a separation oracle at this approximate center to determine whether additional constraints should be added to the … Read more

On the convergence of the central path in semidefinite optimization

The central path in linear optimization always converges to the analytic center of the optimal set. This result was extended to semidefinite programming by Goldfarb and Scheinberg (SIAM J. Optim. 8: 871-886, 1998). In this paper we show that this latter result is not correct in the absence of strict complementarity. We provide a counterexample, … Read more

Improved complexity for maximum volume inscribed ellipsoids

Let $\Pcal=\{x | Ax\le b\}$, where $A$ is an $m\times n$ matrix. We assume that $\Pcal$ contains a ball of radius one centered at the origin, and is contained in a ball of radius $R$ centered at the origin. We consider the problem of approximating the maximum volume ellipsoid inscribed in $\Pcal$. Such ellipsoids have … Read more

Variational Analysis of Non-Lipschitz Spectral Functions

We consider spectral functions $f \circ \lambda$, where $f$ is any permutation-invariant mapping from $\Cx^n$ to $\Rl$, and $\lambda$ is the eigenvalue map from the set of $n \times n$ complex matrices to $\Cx^n$, ordering the eigenvalues lexicographically. For example, if $f$ is the function “maximum real part Citation Math. Programming 90 (2001), pp. 317-352

Variational Analysis of the Abscissa Mapping for Polynomials

The abscissa mapping on the affine variety $M_n$ of monic polynomials of degree $n$ is the mapping that takes a monic polynomial to the maximum of the real parts of its roots. This mapping plays a central role in the stability theory of matrices and dynamical systems. It is well known that the abscissa mapping … Read more

Optimal Stability and Eigenvalue Multiplicity

We consider the problem of minimizing over an affine set of square matrices the maximum of the real parts of the eigenvalues. Such problems are prototypical in robust control and stability analysis. Under nondegeneracy conditions, we show that the multiplicities of the active eigenvalues at a critical matrix remain unchanged under small perturbations of the … Read more