On Inexact Accelerated Proximal Gradient Methods with Relative Error Rules

One of the most popular and important first-order iterations that provides optimal complexity of the classical proximal gradient method (PGM) is the “Fast Iterative Shrinkage/Thresholding Algorithm” (FISTA). In this paper, two inexact versions of FISTA for minimizing the sum of two convex functions are studied. The proposed schemes inexactly solve their subproblems by using relative … Read more

Towards practical generic conic optimization

Many convex optimization problems can be represented through conic extended formulations with auxiliary variables and constraints using only the small number of standard cones recognized by advanced conic solvers such as MOSEK 9. Such extended formulations are often significantly larger and more complex than equivalent conic natural formulations, which can use a much broader class … Read more

Disk matrices and the proximal mapping for the numerical radius

Optimal matrices for problems involving the matrix numerical radius often have fields of values that are disks, a phenomenon associated with partial smoothness. Such matrices are highly structured: we experiment in particular with the proximal mapping for the radius, which often maps n-by-n random matrix inputs into a particular manifold of disk matrices that has … Read more

Convex Hull Representations for Bounded Products of Variables

It is well known that the convex hull of {(x,y,xy)}, where (x,y) is constrained to lie in a box, is given by the Reformulation-Linearization Technique (RLT) constraints. Belotti et al. (2010) and Miller et al. (2011) showed that if there are additional upper and/or lower bounds on the product z=xy, then the convex hull can … Read more

Modular-topology optimization with Wang tilings: An application to truss structures

Modularity is appealing for solving many problems in optimization. It brings the benefits of manufacturability and reconfigurability to structural optimization, and enables a trade-off between the computational performance of a Periodic Unit Cell (PUC) and the efficacy of non-uniform designs in multi-scale material optimization. Here, we introduce a novel strategy for concurrent minimum-compliance design of … Read more

Provable Overlapping Community Detection in Weighted Graphs

Community detection is a widely-studied unsupervised learning problem in which the task is to group similar entities together based on observed pairwise entity interactions. This problem has applications in diverse domains such is social network analysis and computational biology. There is a significant amount of literature studying this problem under the assumption that the communities … Read more

Shape-Constrained Regression using Sum of Squares Polynomials

We consider the problem of fitting a polynomial function to a set of data points, each data point consisting of a feature vector and a response variable. In contrast to standard polynomial regression, we require that the polynomial regressor satisfy shape constraints, such as monotonicity, Lipschitz-continuity, or convexity. We show how to use semidefinite programming … Read more

Stochastic Variance-Reduced Prox-Linear Algorithms for Nonconvex Composite Optimization

We consider minimization of composite functions of the form $f(g(x))+h(x)$, where $f$ and $h$ are convex functions (which can be nonsmooth) and $g$ is a smooth vector mapping. In addition, we assume that $g$ is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose … Read more

A golden ratio primal-dual algorithm for structured convex optimization

We design, analyze and test a golden ratio primal-dual algorithm (GRPDA) for solving structured convex optimization problem, where the objective function is the sum of two closed proper convex functions, one of which involves a composition with a linear transform. GRPDA preserves all the favorable features of the classical primal-dual algorithm (PDA), i.e., the primal … Read more

Openness, Holder metric regularity and Holder continuity properties of semialgebraic set-valued maps

Given a semialgebraic set-valued map $F \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ with closed graph, we show that the map $F$ is Holder metrically subregular and that the following conditions are equivalent: (i) $F$ is an open map from its domain into its range and the range of $F$ is locally closed; (ii) the map $F$ is … Read more