On Relaxation of Some Customized Proximal Point Algorithms for Convex Minimization: From Variational Inequality Perspective

The proximal point algorithm (PPA) is a fundamental method for convex programming. When PPA applied to solve linearly constrained convex problems, we may prefer to choose an appropriate metric matrix to define the proximal regularization, so that the computational burden of the resulted PPA can be reduced, and in most cases, even admit closed form … Read more

Symmetric ADMM with Positive-Indefinite Proximal Regularization for Linearly Constrained Convex Optimization

The proximal ADMM which adds proximal regularizations to ADMM’s subproblems is a popular and useful method for linearly constrained separable convex problems, especially its linearized case. A well-known requirement on guaranteeing the convergence of the method in the literature is that the proximal regularization must be positive semidefinite. Recently it was shown by He et … Read more

Direct Search Methods on Reductive Homogeneous Spaces

Direct search methods are mainly designed for use in problems with no equality constraints. However, there are many instances where the feasible set is of measure zero in the ambient space and no mesh point lies within it. There are methods for working with feasible sets that are (Riemannian) manifolds, but not all manifolds are … Read more

A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications

For a symmetric positive semidefinite linear system of equations $\mathcal{Q} {\bf x} = {\bf b}$, where ${\bf x} = (x_1,\ldots,x_s)$ is partitioned into $s$ blocks, with $s \geq 2$, we show that each cycle of the classical block symmetric Gauss-Seidel (block sGS) method exactly solves the associated quadratic programming (QP) problem but added with an … Read more

BFGS convergence to nonsmooth minimizers of convex functions

The popular BFGS quasi-Newton minimization algorithm under reasonable conditions converges globally on smooth convex functions. This result was proved by Powell in 1976: we consider its implications for functions that are not smooth. In particular, an analogous convergence result holds for functions, like the Euclidean norm, that are nonsmooth at the minimizer. Citation Manuscript: School … Read more

Speed optimization over a path with heterogeneous arc costs

The speed optimization problem over a path aims to find a set of speeds over each arc of the given path to minimize the total cost, while respecting the time-window constraint at each node and speed limits over each arc. In maritime transportation, the cost represents fuel cost or emissions, so study of this problem … Read more

The Fastest Known Globally Convergent First-Order Method for Minimizing Strongly Convex Functions

We design and analyze a novel gradient-based algorithm for unconstrained convex optimization. When the objective function is $m$-strongly convex and its gradient is $L$-Lipschitz continuous, the iterates and function values converge linearly to the optimum at rates $\rho$ and $\rho^2$, respectively, where $\rho = 1-\sqrt{m/L}$. These are the fastest known guaranteed linear convergence rates for … Read more

Lyapunov rank of polyhedral positive operators

If K is a closed convex cone and if L is a linear operator having L(K) a subset of K, then L is a positive operator on K and L preserves inequality with respect to K. The set of all positive operators on K is denoted by pi(K). If J is the dual of K, … Read more

General parameterized proximal point algorithm with applications in the statistical learning

In the literature, there are a few researches for the proximal point algorithm (PPA) with some parameters in the proximal matrix, especially for the multi-objective optimization problems. Introducing some parameters to the PPA will make it more attractive and flexible. By using the unified framework of the classical PPA and constructing a parameterized proximal matrix, … Read more

CONVEX GEOMETRY OF THE GENERALIZED MATRIX-FRACTIONAL FUNCTION

Generalized matrix-fractional (GMF) functions are a class of matrix support functions introduced by Burke and Hoheisel as a tool for unifying a range of seemingly divergent matrix optimization problems associated with inverse problems, regularization and learning. In this paper we dramatically simplify the support function representation for GMF functions as well as the representation of … Read more