Vanishing Price of Anarchy in Large Coordinative Nonconvex Optimization

We focus on a class of nonconvex cooperative optimization problems that involve multiple participants. We study the duality framework and provide geometric and analytic character- izations of the duality gap. The dual problem is related to a market setting in which each participant pursuits self interests at a given price of common goods. The duality … Read more

Bound-constrained polynomial optimization using only elementary calculations

We provide a monotone non increasing sequence of upper bounds $f^H_k$ ($k\ge 1$) converging to the global minimum of a polynomial $f$ on simple sets like the unit hypercube. The novelty with respect to the converging sequence of upper bounds in [J.B. Lasserre, A new look at nonnegativity on closed sets and polynomial optimization, SIAM … Read more

Polyhedral studies of vertex coloring problems: The standard formulation

Despite the fact that many vertex coloring problems are polynomially solvable on certain graph classes, most of these problems are not “under control” from a polyhedral point of view. The equivalence between optimization and separation suggests the existence of integer programming formulations for these problems whose associated polytopes admit elegant characterizations. In this work we … Read more

On an open question about the complexity of a dynamic spectrum management problem

In this paper we discuss the complexity of a dynamic spectrum management problem within a multi-user communication system with K users and N available tones. In this problem a common utility function is optimized. In particular, so called min-rate, harmonic mean and geometric mean utility functions are considered. The complexity of the optimization problems with … Read more

Convergence analysis for Lasserre’s measure–based hierarchy of upper bounds for polynomial optimization

We consider the problem of minimizing a continuous function f over a compact set K. We analyze a hierarchy of upper bounds proposed by Lasserre in [SIAM J. Optim. 21(3) (2011), pp. 864-ô€€€885], obtained by searching for an optimal probability density function h on K which is a sum of squares of polynomials, so that … Read more

Convex hull of two quadratic or a conic quadratic and a quadratic inequality

In this paper we consider an aggregation technique introduced by Yildiran, 2009 to study the convex hull of regions defined by two quadratic or by a conic quadratic and a quadratic inequality. Yildiran shows how to characterize the convex hull of open sets defined by two strict quadratic inequalities using Linear Matrix Inequalities (LMI). We … Read more

Higher Order Maximum Persistency and Comparison Theorems

We address combinatorial problems that can be formulated as minimization of a partially separable function of discrete variables (energy minimization in graphical models, weighted constraint satisfaction, pseudo-Boolean optimization, 0-1 polynomial programming). For polyhedral relaxations of such problems it is generally not true that variables integer in the relaxed solution will retain the same values in … Read more

An improved algorithm for L2-Lp minimization problem

In this paper we consider a class of non-Lipschitz and non-convex minimization problems which generalize the L2−Lp minimization problem. We propose an iterative algorithm that decides the next iteration based on the local convexity/concavity/sparsity of its current position. We show that our algorithm finds an epsilon-KKT point within O(log(1/epsilon)) iterations. The same result is also … Read more

Coercive polynomials and their Newton polytopes

Many interesting properties of polynomials are closely related to the geometry of their Newton polytopes. In this article we analyze the coercivity on $\mathbb{R}^n$ of multivariate polynomials $f\in \mathbb{R}[x]$ in terms of their Newton polytopes. In fact, we introduce the broad class of so-called gem regular polynomials and characterize their coercivity via conditions imposed on … Read more

On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms

We consider the problem of minimizing a general continuously differentiable function over symmetric sets under sparsity constraints. These type of problems are generally hard to solve as the sparsity constraint induces a combinatorial constraint into the problem, rendering the feasible set to be nonconvex. We begin with a study of the properties of the orthogonal … Read more