A Tractable Multi-Leader Multi-Follower Peak-Load-Pricing Model with Strategic Interaction

While single-level Nash equilibrium problems are quite well understood nowadays, less is known about multi-leader multi-follower games. However, these have important applications, e.g., in the analysis of electricity and gas markets, where often a limited number of firms interacts on various subsequent markets. In this paper, we consider a special class of two-level multi-leader multi-follower … Read more

Tight bounds on Lyapunov rank

The Lyapunov rank of a cone is the number of independent equations obtainable from an analogue of the complementary slackness condition in cone programming problems, and more equations are generally thought to be better. Bounding the Lyapunov rank of a proper cone in R^n from above is an open problem. Gowda and Tao gave an … Read more

A general branch-and-bound framework for continuous global multiobjective optimization

Current generalizations of the central ideas of single-objective branch-and-bound to the multiobjective setting do not seem to follow their train of thought all the way. The present paper complements the various suggestions for generalizations of partial lower bounds and of overall upper bounds by general constructions for overall lower bounds from partial lower bounds, and … Read more

Mathematical Programming formulations for the Alternating Current Optimal Power Flow problem

Power flow refers to the injection of power on the lines of an electrical grid, so that all the injections at the nodes form a consistent flow within the network. Optimality, in this setting, is usually intended as the minimization of the cost of generating power. Current can either be direct or alternating: while the … Read more

Convex Maximization via Adjustable Robust Optimization

Maximizing a convex function over convex constraints is an NP-hard problem in general. We prove that such a problem can be reformulated as an adjustable robust optimization (ARO) problem where each adjustable variable corresponds to a unique constraint of the original problem. We use ARO techniques to obtain approximate solutions to the convex maximization problem. … Read more

Proscribed normal decompositions of Euclidean Jordan algebras

Normal decomposition systems unify many results from convex matrix analysis regarding functions that are invariant with respect to a group of transformations—particularly those matrix functions that are unitarily-invariant and the affiliated permutation-invariant “spectral functions” that depend only on eigenvalues. Spectral functions extend in a natural way to Euclidean Jordan algebras, and several authors have studied … Read more

Cycle-based formulations in Distance Geometry

The distance geometry problem asks to find a realization of a given simple edge-weighted graph in a Euclidean space of given dimension K, where the edges are realized as straight segments of lengths equal (or as close as possible) to the edge weights. The problem is often modelled as a mathematical programming formulation involving decision … Read more

Valid inequalities for quadratic optimisation with domain constraints

In 2013, Buchheim and Wiegele introduced a quadratic optimisation problem, in which the domain of each variable is a closed subset of the reals. This problem includes several other important problems as special cases. We study some convex sets and polyhedra associated with the problem, and derive several families of strong valid inequalities. We also … Read more

An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias

Structured non-convex learning problems, for which critical points have favorable statistical properties, arise frequently in statistical machine learning. Algorithmic convergence and statistical estimation rates are well-understood for such problems. However, quantifying the uncertainty associated with the underlying training algorithm is not well-studied in the non-convex setting. In order to address this short-coming, in this work, … Read more

Proximity in Concave Integer Quadratic Programming

A classic result by Cook, Gerards, Schrijver, and Tardos provides an upper bound of n∆ on the proximity of optimal solutions of an Integer Linear Programming problem and its standard linear relaxation. In this bound, n is the number of variables and ∆ denotes the maximum of the absolute values of the subdeterminants of the … Read more